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Abstract There have been contradictory reports sug-

gesting that CO2 may constrict, dilate, or have no effect on

pulmonary vessels. Permissive hypercapnia has become a

widely adopted ventilatory technique used to avoid venti-

lator-induced lung injury, particularly in patients with

acute respiratory distress syndrome (ARDS). On the other

hand, respiratory alkalosis produced by mechanically

induced hyperventilation is the mainstay of treatment for

newborn infants with persistent pulmonary hypertension. It

is important to clarify the vasomotor effect of CO2 on

pulmonary circulation in order to better evaluate the

strategies of mechanical ventilation in intensive care. In the

present study, pulmonary vascular responses to CO2 were

observed in isolated rat lungs (n = 32) under different

levels of pulmonary arterial pressure (PAP) induced by

various doses of endothelin-1 (ET-1). The purposes of this

study were to investigate (1) the vasodilatory effect of 5%

CO2 in either N2 (hypoxic-hypercapnia) or air (normoxic-

hypercapnia) at different PAP levels induced by various

doses of endothelin-1, and (2) the role of nitric oxide (NO)

in mediating the pulmonary vascular response to hyper-

capnia, hypoxia, and ET-1. The results indicated that (1)

CO2 produces pulmonary vasodilatation at high PAP under

ET-1 and hypoxic vasoconstriction; (2) the vasodilatory

effect of CO2 at different pressure levels varies in accor-

dance with the levels of PAP, the dilatory effect tends to be

more evident at higher PAP; and (3) endogenous NO

attenuates ET-1 and hypoxic pulmonary vasoconstriction

but does not augment the CO2-induced vasodilatation.

Keywords Carbon dioxide � Endothelin-1 �
Pulmonary vasodilatation � Permissive hypercapnia

Abbreviations

ARDS Acute respiratory distress syndrome

ET-1 Endothelin-1

NO Nitric oxide

PAP Pulmonary arterial pressure

PVP Pulmonary venous pressure

Introduction

Permissive hypercapnia with a small tidal volume has

become a widely adapted ventilatory technique used to

avoid ventilator-induced lung injury in patients with lung
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injury or acute respiratory distress syndrome (ARDS). Such

‘‘protective’’ ventilator strategies minimize lung stretch

and patient mortality but often lead to an elevation in

PaCO2. However, the current concepts clearly recognize an

independent protective effect of elevated CO2 tension in

experimental models of lung injury.

The effect of CO2 on pulmonary vascular tone is contro-

versial, with evidence of both vasoconstriction and vasodi-

latation effects. Previous investigations have shown that

high CO2 tension with elevated hydrogen ion concentration

in the blood increases the extracellular Ca2? influx which

accounts for the vasoconstriction property of CO2 in the

pulmonary circulation [1–3]. Nonetheless, CO2 also plays a

vasodilator role under the condition of high vascular tone,

and such a vasodilatory effect is related to the concentration

of inhaled CO2, not to the blood pH value [4–6]. Other lines

of evidence have also indicated that CO2 may attenuate

vasoconstriction induced by drugs or hypoxia [7–10]. More

recently, studies have supported the evidence that hyper-

capnic acidosis attenuates ischemia-reperfusion, endotoxin,

and ventilator-induced lung injuries in several animal mod-

els [11–15]. The potential beneficial effects of therapeutic

hypercapnia by direct improvement of gas exchange and

anti-inflammatory events have also been reported in several

studies [16–18]. Although these experiments indicate that

CO2 exerts beneficial effects in the lungs, the pulmonary

vascular response to hypercapnia under various conditions

remains to be clarified. Moreover, reports to date of the

vasoactive action of CO2 have chiefly concentrated on its

vasodilatory and beneficial effects. We know that discrepant

vasoactive action of CO2 may arise from differences in

pulmonary vascular tone but the pressure–response rela-

tionship between the degree of CO2-induced vasodilatation

and the level of PAP has not been studied.

It is known that endothelial cells release both vasocon-

strictors and vasodilators in modulating pulmonary vascu-

lar tone. The balance of vasoconstrictors and vasodilators

ultimately determines the pulmonary vascular tone and

structure in physiologic and pathologic states [19–23].

Endothelin-1 (ET-1) is a potent vasoconstrictor peptide

produced by endothelial cells and has been widely impli-

cated to be critical in the modulation of hypoxic pulmonary

vasoconstriction [20, 24, 25]. ETA receptor activation has

been shown to be associated with vasoconstriction,

whereas ETB receptors, located mainly on the vascular

endothelium, are responsible for the release of vasodilator

substances such as nitric oxide (NO) upon stimulation [20,

26–29]. It has recently emerged that vasoactive mediators

such as NO and ET-1 play an important role in the mod-

ulation of pulmonary vessel response to hypoxic stimula-

tion [3, 30–34]. Moreover, hypercapnia and hypoxic

pulmonary vasoconstriction usually coexist in ARDS [14,

35, 36]. There has been considerable interest in the effect

of hypercapnic acidosis on hypoxic and ET-1-induced

pulmonary vasoconstriction.

In the present study we attempted to assess the effect of

CO2 on pulmonary vascular tone under various conditions.

First, we tested whether the vasodilator effect of CO2 on

pulmonary circulation was dependent on the level of pul-

monary arterial pressure (PAP) induced by ET-1 and

hypoxia stimulation. Second, we attempted to clarify the

role of NO in mediating the pulmonary vascular response

to hypercapnia, hypoxia, and ET-1 stimulation. Therefore,

the pulmonary vascular responses to CO2 inhalation were

observed in isolated rat lungs under different levels of PAP

induced by various doses of ET-1. The vasodilatory effects

of CO2 inhalation on pulmonary hypertension were eval-

uated with comparisons of the vascular tone at normoxic-

hypercapnia (5% CO2 in air) and hypoxic-hypercapnia (5%

CO2 in N2) ventilation. To clarify the modulatory role of

NO, we investigated the effect of NO and ETB receptor

blockade on hypercapnia, hypoxia, and ET-1-induced

changes in pulmonary vascular tone.

Materials and Methods

Animals

Adult male Sprague-Dawley (SD) rats weighing 300–350 g

were used. The specific pathogen-free animals were pur-

chased from the National Animal Center and housed in a

temperature-controlled animal room. The room tempera-

ture was maintained at 22 ± 1�C under a 12/12-h light/

dark regimen. Food and water were available ad libitum.

The use and care of the animals were approved by the

Animal Care and Use Committee of Kaohsiung Medical

University.

Isolation and Perfusion of Rat Lungs

The rats were deeply anesthetized with an intraperitoneal

injection of pentobarbital sodium (50 mg kg-1). The

experimental setup was modified from previous studies

[21, 27, 37]. After a tracheotomy, the lungs were artificially

ventilated with room air. Heparin (1 U/g) was administered

into the left ventricle after a midsternal thoracotomy. Ten

milliliters of blood was collected from the right ventricle

and mixed with 10 ml of Hank’s balanced salt solution

(HBSS; in mM: NaCl, 136.9; KCl, 5.4; glucose, 5.6;

KH2PO4, 0.4; Na2HPO4, 0.3; and 6% albumin, and pH was

adjusted to 7.35–7.40) and subsequently used to perfuse the

isolated lungs. In addition, the perfusion medium was

gassed with a mixture of 5% CO2 and monitored contin-

uously for pH. During the initial stabilization period, the

pH was adjusted to 7.4 ± 0.05 with HCl. A cannula was
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placed in the pulmonary artery through a puncture into the

right ventricle and a tight ligature was placed around the

main trunk of the pulmonary artery. A large catheter was

inserted into the left atrium through the left ventricle and

mitral valve and fixed by ligature at the apex of the heart to

divert pulmonary venous outflow into a reservoir. A third

ligature was placed above the arterioventricular junction to

prevent perfusate flow into the ventricles. Perfusion fluid,

maintained at 37 ± 0.5�C, was circulated by use of a roller

pump at a flow rate of 10 ml min-1. The PAP and pul-

monary venous pressure (PVP) were measured with pres-

sure transducers (Gould Instruments, Cleaned, OH) from a

side arm of the inflow and outflow cannula. The PVP was

set at 2 mmHg by adjusting the height of the venous

reservoir.

After an initial hyperinflation to reverse atelectasis, the

lungs were ventilated at 60–70 breaths/min and tidal vol-

ume at 2.5–3 ml. The end-expiratory pressure was set to

2 cm H2O. The gas tension in the perfusate was measured

at the beginning of each experiment and after changes in

ventilatory gas mixtures by collecting perfusion fluid

anaerobically and analyzing immediately using a gas ana-

lyzer (Stat profile 5). There were three criteria for a satis-

factory isolated lung preparation: no leakage at the site of

cannula insertion, no evidence of homeostasis or edema,

and an isogravimetric state.

Drug Preparation and Delivery

Drug solutions were prepared immediately before use.

ET-1, N-nitro-L-arginine methyl ester (L-NAME, NOS

blocker), and BQ788 (ETB receptor blocker) were pur-

chased from Sigma Chemical (St. Louis, MO, USA). ET-1

was added into a side way prior to the roller pump.

L-NAME and BQ788 were added directly into the venous

reservoir.

Experimental Outline

Experiments in isolated perfused lungs were organized into

two series. Series A examined the effect of CO2 on ET-1-

induced pulmonary vasoconstriction under normoxic-

hypercapnia ventilation with and without endogenous NO.

To assess the role of NO in mediating the pulmonary

vascular response to hypercapnia and ET-1 challenge,

ET-1-induced pulmonary vasoconstriction and CO2-

induced vasodilatation were compared between Group A1

and Group A2 (pretreated with L-NAME, 400 mM and

BQ788, 1 lM).

Experiment series B was carried out to evaluate the

effect of CO2 on ET-1-induced pulmonary vasoconstriction

under hypoxic-hypercapnia ventilation with and without

endogenous NO. To clarify the modulation role of NO in

response to hypoxic-hypercapnia and ET-1 challenge, the

pulmonary vascular response was compared between

Group B1 and Group B2 (pretreated with L-NAME,

400 mM and BQ788, 1 lM).

Experimental Protocol

During the baseline period lungs were ventilated with room

air under constant perfusion flow (10 ml min-1). Subse-

quently, the preparations were randomized into four groups

(A1, n = 8; A2, n = 8; B1, n = 8; and B2, n = 8) and

sequentially challenged with graded concentrations (5, 50,

and 200 pmol) of ET-1. Following each dose of ET-1, the

pH, gas tension in the perfusate, and PAP were obtained

after steady PAP values were observed over a period of at

least 10 min. Thereafter, the inspired gas was switched to

the following mixture: (1) Groups A1 and A2: normoxic-

hypercapnia gas with 5% CO2 in air, and (2) Groups B1

and B2: hypoxic-hypercapnia gas with 5% CO2 in N2.

After 10 min of experimental gas inhalation, the changes in

PAP, pH, and gas tension in the perfusate were recorded.

The inspired gas was then switched back to room air for

10 min before the next challenge of ET-1 and inhaled gas.

Acetic Acid Group

In this additional experiment (n = 6), we intended to

observe the vasoactive effect of acidosis, which may clarify

whether the vasodilatory effect of CO2 is pH dependent.

ET-1 (200 pmol) was administered to induce pulmonary

hypertension. Subsequently, two challenge doses of acetic

acid (1.5 M/100 ml) were given 10 min apart to observe

the change in PAP and perfusate pH.

Statistical Analysis

Values are expressed as mean ± SEM. Statistical evalua-

tion of the differences among and within groups was per-

formed using paired Student t test. Differences were

considered statistically significant at p \ 0.05.

Results

Effect of CO2 on ET-1-Induced Pulmonary

Vasoconstriction under Normoxic-Hypercapnia

Ventilation with and without Endogenous NO

In experiment series A, ventilation with normoxic-hyper-

capnia gas produced a significant increase in PaCO2

(p \ 0.01) and a decrease in pH value (p \ 0.01)

(Table 1). ET-1 caused a dose-dependent increase in PAP

at constant perfusion of the isolated lungs (Table 1,

Lung (2010) 188:199–207 201

123



T
a

b
le

1
p

H
,

P
C

O
2

in
th

e
p

er
fu

sa
te

,
an

d
P

A
P

d
u

ri
n

g
th

e
d

if
fe

re
n

t
ex

p
er

im
en

ta
l

co
n

d
it

io
n

s

T
re

at
m

en
t

B
as

el
in

e?
E

T
-1

(5
p

m
o

l)
?

G
as

in
h

al
at

io
n
?

R
o

o
m

ai
r?

E
T

-1
(5

0
p

m
o

l)
?

G
as

in
h

al
at

io
n
?

R
o

o
m

ai
r?

E
T

-1
(2

0
0

p
m

o
l)
?

G
as

in
h

al
at

io
n
?

R
o

o
m

ai
r

G
ro

u
p

A
1

P
A

P
1

5
.4

±
1

.2
1

7
.3

±
1

.4
1

4
.7

±
1

.2
1

7
.1

±
1

.3
2

1
.2

±
1

.4
1

6
.5

±
1

.2
2

0
.3

±
1

.7
3

0
.0

±
3

.4
2

1
.2

5
±

2
.3

3
1

.2
±

4
.3

P
C

O
2

3
6

.3
±

0
.6

6
2

.8
±

1
.9

*
3

7
.5

±
0

.8
6

6
.2

±
1

.6
*

3
5

.2
±

0
.4

6
5

.7
±

1
.1

*

p
H

7
.3

6
±

0
.0

2
7

.1
8

±
0

.0
3

7
.3

9
±

0
.0

2
7

.1
6

±
0

.0
3

7
.3

7
±

0
.0

1
7

.1
5

±
0

.0
3

G
ro

u
p

A
2

P
A

P
1

5
.8

±
1

.0
1

8
.5

±
1

.1
1

5
.2

±
1

.0
1

8
.6

±
1

.5
2

5
.3

±
2

.3
1

7
.5

±
1

.6
2

4
.8

±
1

.7
3

9
.2

±
2

.9
2

6
.9

±
2

.5
3

6
.7

±
3

.1

P
C

O
2

3
4

.9
±

0
.3

7
0

.5
±

2
.1

*
3

8
.7

±
0

.7
6

8
.7

±
2

.2
*

4
0

.1
±

0
.8

6
9

.2
±

1
.9

*

p
H

7
.3

3
±

0
.0

1
7

.0
9

±
0

.0
4

*
7

.3
8

±
0

.0
2

7
.1

3
±

0
.0

4
*

7
.3

5
±

0
.0

2
7

.1
2

±
0

.0
3

*

G
ro

u
p

B
1

P
A

P
1

5
.4

±
1

.1
1

7
.5

±
1

.4
1

4
.3

±
1

.5
1

7
.4

±
1

.7
2

1
.1

±
1

.9
1

6
.3

±
1

.1
2

0
.7

±
1

.5
3

2
7

.2
±

2
.5

2
1

.1
±

1
.9

2
6

.4
±

2
.6

P
C

O
2

3
5

.6
±

0
.2

6
9

.5
±

1
.6

*
3

8
.2

±
0

.7
6

3
.4

±
1

.9
*

3
9

.9
±

0
.7

7
0

.2
±

2
.3

*

p
H

7
.3

5
±

0
.0

1
7

.1
1

±
0

.0
3

*
7

.4
0

±
0

.0
2

7
.1

7
±

0
.0

3
*

7
.3

5
±

0
.0

2
7

.0
8

±
0

.0
4

*

G
ro

u
p

B
2

P
A

P
1

4
.5

±
1

.2
1

6
.3

±
1

.7
2

4
.4

±
2

.4
2

0
.3

±
2

.0
2

3
.8

±
1

.6
3

4
.4

±
2

.9
2

9
.4

±
3

.0
3

5
.7

±
3

.0
5

1
.9

±
6

.0
4

2
.7

±
3

.9

?
1

7
.4

±
1

.4
?

2
4

.6
±

4
.0

?
3

7
.7

±
5

.2

P
C

O
2

3
3

.2
±

0
.2

6
2

.8
±

1
.6

*
3

9
.2

±
0

.5
6

3
.2

±
0

.9
*

3
5

.9
±

0
.5

6
8

.2
±

1
.6

*

p
H

7
.4

5
±

0
.0

1
7

.1
8

±
0

.0
3

*
7

.3
6

±
0

.0
2

7
.1

7
±

0
.0

3
*

7
.3

6
±

0
.0

2
7

.1
2

±
0

.0
3

*

V
al

u
es

ar
e

m
ea

n
s

±
S

E
M

G
as

in
h

al
at

io
n

:
G

ro
u

p
A

1
=

5
%

C
O

2
in

ai
r;

G
ro

u
p

A
2

:
5

%
C

O
2

in
ai

r
p

re
tr

ea
te

d
w

it
h

L
-N

A
M

E
?

B
Q

7
8

8
;

G
ro

u
p

B
1

=
5

%
C

O
2

in
N

2
;

G
ro

u
p

B
2

=
5

%
C

O
2

in
N

2
p

re
tr

ea
te

d
w

it
h

L
-

N
A

M
E

?
B

Q
7

8
8

P
A

P
p

u
lm

o
n

ar
y

ar
te

ri
al

p
re

ss
u

re
(m

m
H

g
),

P
C

O
2

ca
rb

o
n

d
io

x
id

e
te

n
si

o
n

*
\

0
.0

1
co

m
p

ar
ed

w
it

h
co

rr
es

p
o

n
d

in
g

v
al

u
es

b
ef

o
re

g
as

in
h

al
at

io
n

202 Lung (2010) 188:199–207

123



Fig. 1a). In Group A1, ET-1 at doses of 5, 50, and

200 pmol elevated the PAP by 1.9 ± 0.5, 4.2 ± 0.9, and

9.7 ± 2.0 mmHg, respectively. Inhalation of normoxic-

hypercapnia gas directly decreased the PAP by 2.6 ± 0.7,

4.7 ± 0.8, and 8.7 ± 1.3 mmHg (p \ 0.01) (Fig. 1a, b).

However, the PAP rebounded by 2.4 ± 0.6, 3.8 ± 1.4, and

10.0 ± 2.7 mmHg when the inhaled gas was switched

back to room air (Fig. 1a).

In Group A2, there was no significant influence of

L-NAME and BQ788 pretreatment on basal PAP. In this

group we observed that the ET-1 vasoconstriction effect

was enhanced under endogenous NO inhibition. The

increases in PAP were 2.7 ± 0.8, 6.8 ± 1.1, and 14.3 ±

1.5 mmHg with the three sequential ET-1 doses. Norm-

oxic-hypercapnia gas inhalation decreased the PAP by

3.3 ± 1.0, 7.8 ± 0.8, and 12.3 ± 2.1 mmHg (p \ 0.01),

respectively (Fig. 1a, c). Again, the PAP rebounded by

3.4 ± 1.4, 7.3 ± 0.8, and 9.8 ± 2.4 mmHg when the

inhaled gas was changed to room air (Fig. 1a). Comparing

the percentages of normoxic-hypercapnia gas-induced

relaxation in both groups, the vasodilatory effect of CO2

was not affected by pretreatment with L-NAME and

BQ788 (Fig. 1d).

The Effect of CO2 on ET-1-Induced Pulmonary

Vasoconstriction under Hypoxic-Hypercapnia

Ventilation with and without Endogenous NO

In experiment series B, ventilation with hypoxic-hyper-

capnia gas produced a significant increase in PaCO2

(p \ 0.01) and decrease in pH value (p \ 0.01) (Table 1).

ET-1 also caused a dose-dependent increase in PAP at

constant perfusion of the isolated lungs (Table 1, Fig. 2a).

In Group B1, ET-1 at doses of 5, 50, and 200 pmol elevated

the PAP by 2.1 ± 0.6, 3.8 ± 0.9, and 6.6 ± 1.3 mmHg,

respectively (Fig. 2a). With challenge by ET-1, direct

vasodilatation in response to the hypoxic-hypercapnia gas

(5% CO2 in N2) was observed. The PAP directly decreased

by 3.3 ± 0.8, 4.9 ± 1.2, and 6.2 ± 0.9 mmHg (p \ 0.05),

and such effects were reversible by changing the inhaled

gas to room air (Fig. 2a, b). In Group B2, inhibition of NO

synthesis by L-NAME and BQ788 evoked a biphasic

response with transient hypoxic vasoconstriction. In this

group, the PAP increases by the three sequential doses of

ET-1 were 1.8 ± 0.6, 3.5 ± 0.9, and 6.3 ± 1.5 mmHg. In

response to hypoxic-hypercapnia gas (5% CO2 ? N2), PAP

was initially increased by 8.2 ± 1.8, 11.0 ± 2.0, and
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P
ul

m
on

ar
y 

A
rt

er
ia

l P
re

ss
ur

e 
(m

m
H

g)

10

20

30

40

50

Group A1: normoxic-hypercapnia gas
Group A2: normoxic-hypercapnia gas + L-NAME &BQ788

5 pmol 200 pmol50 pmol GasGas Gas RARA RA
Baseline

(a)

5 pmol 50 pmol 200 pmol

(b)

(c)

0

20

40

60

80

100

120

140

160

180

200

5%
 C

O
2 

in
du

ce
d 

re
la

xa
tio

n 
(%

) Group A1
Group A2 (pretreated with L-NAME+BQ788)

(d)

Group A1

-20

-15

-10

-5

0

5

10

15

20

25

5 pmol 50 pmol 200 pmol

C
ha

ng
e 

in
 P

A
P

 (
m

m
H

g)

ET-1 challenge 

Gas challenge (5%CO2 in air)

Group A2: pretreated with L-NAME & BQ788 

-20

-15

-10

-5

0

5

10

15

20

25

5 pmol 50 p pmol

C
ha

ng
e 

in
 P

A
P

 (
m

m
H

g)

ET-1 challenge

Gas challenge (5% CO2 in air)

200mol

Fig. 1 a Graph representing mean (SEM) PAP at baseline and during

the course of the experiment in series A. b, c PAP change in response

to normoxic-hypercapnia gas (5% CO2 in air) following with various

doses of ET-1 challenge in Group A1 and Group A2. PAP increased

significantly in response to each dose of ET-1 (� p \ 0.05; ��

p \ 0.01 compared with previous challenge doses). Normoxic-

hypercapnia gas challenge (5% CO2 in air) caused vasodilatory

effects which tended to be more evident at higher PAP (* p \ 0.05;

** p \ 0.01 compared with previous course of challenge). d Percent

relaxation in response to CO2 showed no significant difference

between Group A1 and Group A2. The vasodilatation effect of CO2

was not affected by L-NAME and BQ788
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16.2 ± 3.5 mmHg (p \ 0.01). However, after 4–6 min of

gas inhalation, PAP started to drop gradually; after 10 min

of gas inhalation, PAP had decreased by 7.0 ± 1.2,

9.8 ± 2.2, and 14.2 ± 2.1 mmHg (p \ 0.01) (Fig. 2a, c).

Again, inhalation of room air reversed the PAP by 3.0 ± 1.2,

4.8 ± 2.3, and 5.0 ± 3.7 mmHg (Fig. 2a). In these series of

experiments, inhibition of endogenous NO tended to pre-

serve the pulmonary vasoconstrictor response to hypoxia,

but it did not eliminate the vasodilatory effect of CO2.

Effect of Acidosis on ET-1-Induced Pulmonary

Hypertension

In the acetic acid group, with institution of ET-1

(200 pmol), PAP was elevated from 15.3 ± 0.7 to

19.7 ± 1.5 mmHg. On the first dose of acetic acid [1.5 M

(100 ll)], the pH value dropped to 7.13 ± 0.09 from

7.43 ± 0.03 while PAP was measured as 20.7 ±

1.6 mmHg. On the second dose of acetic acid [1.5 M

(100 ll)], the pH value dropped to 6.98 ± 0.3 while PAP

was measured as 20.9 ± 3.2 mmHg (Fig. 3).
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Discussion

We have obtained several findings in the present study. The

CO2-mediated vasodilatory effect on pulmonary vascular

tone was more evident with pulmonary hypertension

induced by ET-1 or hypoxic challenge. Also, the higher the

PAP the stronger the vasodilatory effect observed

(Figs. 1a, 2a), which indicates a pressure–response rela-

tionship between the degree of CO2-induced vasodilatation

and the level of PAP. The results also suggest that CO2 is

not a specific antagonist of constrictor stimulus to hypoxia

and ET-1. Pretreatment with L-NAME and BQ788 signif-

icantly enhanced ET-1 and hypoxic pulmonary vasocon-

striction (Figs. 1a, 2a). However, the pulmonary

vasodilatory effects of CO2 essentially were not affected by

L-NAME or BQ788 (Fig. 1d), suggesting that NO was not

involved in the hypercapnic vasodilatation.

A number of factors have been proposed to be involved

in the mediation or modulation of hypoxic pulmonary

vasoconstriction, including NO, angiotension II, prosta-

glandin, and endothelin. Several studies have pointed out

that an increase in NO production during acute or chronic

hypoxia tends to blunt the vasoconstrictor effect induced

by hypoxia [9, 22, 32, 38]. ETA receptor activation has

been shown to be associated with vasoconstriction,

whereas ETB receptors located mainly on the vascular

endothelium are responsible for the release of vasodilator

substances such as NO upon stimulation [26, 31, 34, 39]. In

our study, we observed direct vasodilatation in response to

hypoxic-hypercapnia gas inhalation in Group B1 with

challenges of various doses of ET-1 (Fig. 2a, b). In con-

trast, in Group B2 with challenges of ET-1, inhibition of

NO evoked a biphasic response of transient hypoxic

vasoconstriction followed by CO2-induced vasodilatation

in response to hypoxic-hypercapnia (Fig. 2a, c). In Group

B experimental conditions, under hypoxia exposure, ET-1

binding with type B receptor enhances NO synthesis which

could counterbalance hypoxic vasoconstriction. This phe-

nomenon could explain the different responses to hypoxic

gas between Groups B1 and B2. In our additional experi-

ment, we proved that the CO2-induced vasodilatation

observed in Group B2 could be aborted with pure N2

inhalation (data not shown). These results also indicate that

NO is significantly involved in ET-1 and hypoxic vaso-

constriction, while not contributing to hypercapnic venti-

lation in the face of ET-1 and hypoxic vasoconstriction. In

clinical observations, hypoxia and hypercapnia often

coexist with ARDS and other forms of acute or chronic

lung disease [14]. In the present study we proved that acute

hypoxia causes pulmonary vasoconstriction but coexistent

hypercapnia eliminates this effect. These findings suggest

that coexistent hypercapnia inhibits hypoxia-induced pul-

monary vasoconstriction in an isolated lung model.

There is evidence that high CO2 tension with elevated

hydrogen ions (low pH) increases calcium influx and is the

main cause of vasoconstriction [4, 8, 10]. Early work done

by Duke et al. [40] and Shaw and Barer [5] showed that

under normal vascular tone, CO2 usually caused weak

vasoconstriction; the addition of acid also caused vaso-

constriction, while alkali administration caused vasodila-

tation. Subsequent studies have reported that respiratory

acidosis tends to potentiate the pressor response to hypoxia

and vasoconstrictors, while respiratory alkalosis exerts the

opposite effect [6, 8]. These findings suggest that an

increase in hydrogen ion concentration alone causes pul-

monary vasoconstriction and that an increase in CO2 ten-

sion in the blood could attenuate the vasomotor response to

hypoxia or vasoconstrictors without depending on the

hydrogen ion concentration. In the present study we also

confirmed that the vasodilatory effect of CO2 is pH-inde-

pendent. In the additional experiment we added acetic acid

to alter the pH value close to the value produced by

hypercapnia (Fig. 3). The addition of acetic acid decreased

the pH but slightly elevated the PAP. In this respect, our

observation agrees with that of Viles and Shepherd [4] who

also found that CO2 acted as a pulmonary vasodilator

independent of hydrogen ion concentration. The action of

CO2 on vascular tone was described to be local since it was

present after autonomic blockade in isolated perfused lungs

and was not abolished in intact animals by vagotomy or

atropine [5]. Little is known about the mechanisms of the

vasodilator effect of CO2 on the pulmonary circulation.

There has been considerable interest in the role of NO in

mediating hypercapnic vasodilatation. In the present study,

blocking endogenous NO with L-NAME and BQ788 did

not eliminate the vasodilatory response to hypercapnia, but

it enhanced hypoxic and ET-1 pulmonary vasoconstriction.

NO seems to specifically modulate ET-1 and hypoxic

pulmonary vasoconstriction while not being involved in

CO2-induced vasodilatation. In contrast, Yamaguchi et al.

[41] documented that hypercapnic acidosis elevated vas-

cular tone and perfusate nitrite/nitrate in an isolated lung

model. Other studies have also reported that hypercapnia

acidosis is associated with the upregulation of NOS-med-

iated NO-dependent effects at vascular and molecular

levels [42–44]. Although our results differ from previous

studies, it appears that acidification may stimulate

unidentified mechanisms in the pretranscriptional phase of

eNOS [45, 46]. On the basis of those studies, it has been

proposed that the effect of CO2 dilatation is a direct action

on smooth muscle while constriction is caused by the

increasing intracellular hydrogen ion concentration. Our

results also suggest that the dilator action of CO2 is inde-

pendent of the constrictor stimulus, as CO2 produces a

nonspecific antagonism of constriction response to hypoxia

and ET-1. According to previous studies [5, 6, 41, 47],
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there is no significant difference in pulmonary vascular

resistance in response to graded CO2 or different concen-

tration of CO2. In the present study we did not titrate the

optimum dose of CO2 but simply used a concentration of

5% CO2. This produced a degree of hypercapnia acidosis

similar to that commonly observed when using protective

ventilatory strategies. Reports to date indicate that the

vasoactive action of CO2 is dependent on the initial pul-

monary vascular resistance; during basal tone condition,

CO2 is a mild vasoconstrictor, while at high pulmonary

vascular resistance, it is a potent vasodilator [2, 4–10, 13,

17]. In this connection, our results support the finding that

the vasodilator effect of CO2 on pulmonary circulation is

dependent on the level of PAP, and they also indicate that

the dilatory effect of CO2 tends to be more evident at high

PAP. We have demonstrated, for the first time, a pressure–

response relationship between the degree of CO2-induced

vasodilatation and the level of PAP.

In ARDS patients using mechanical ventilation, per-

missive hypercapnia with a small tidal volume is viewed to

be an undesirable side effect to be tolerated in order to

prevent ventilator-induced lung injury. There is now

increasing evidence from several experimental models that

suggests therapeutic hypercapnia by inspired CO2 exerts a

protective effect. Our findings are encouraging in that

increased partial pressure of CO2 in arterial blood might be

a beneficial adjunct to the strategies of lung protective

ventilation in critical illness rather than as an inconvenient

side effect. This could have important implications for the

clinical management of mechanical ventilation in intensive

care settings.

In conclusion, our data provide evidence that (1) CO2

produces pulmonary vasodilatation at high PAP under

ET-1 and hypoxic vasoconstriction, (2) the vasodilatory

effects of CO2 at different pressure levels vary in accor-

dance with the levels of PAP—the dilatory effect tends to

be more evident at higher PAP, and (3) endogenous NO

attenuates ET-1 and hypoxic pulmonary vasoconstriction

but does not augment CO2-induced vasodilatation.
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