Effects of Typhoon Disturbance on the Abundances of Two Mid-Water Fish Species in a Mountain Stream of Northern Taiwan

Ling-chuan Chuang¹, Bao-sen Shieh², Chi-chang Liu^{1,3}, Yao-sung Lin^{1,3}, and

Shih-hsiung Liang⁴

¹ Department of Life Science, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan

 ² Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shihchuan 1st Road, Kaohsiung 807, Taiwan
 ³ Institute of Ecology and Evolutionary Biology, National Taiwan University,
 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
 ⁴ Department of Biotechnology, National Kaohsiung Normal University,

^{*} Department of Biotechnology, National Kaohsiung Normal University, 62 Sanchung Rd., Yanchao, Kaohsiung 824, Taiwan

(Accepted February 1, 2008)

Ling-chuan Chuang, Bao-sen Shieh, Chi-chang Liu, Yao-sung Lin, Shih-hsiung Liang (2008) Effects of typhoon disturbance on the abundances of two mid-water fish species in a mountain stream of northern Taiwan. *Zoological Studies* 47(5): xxx-xxx. The objective of this study was to use a 9-yr dataset to evaluate the responses of *Onychostoma barbatula* and *Candidia barbata* abundances to 3 typhoon events in a mountain stream of northern Taiwan. The association of habitat variables with fish abundances was also explored. Bimonthly electrofishing was conducted at 4 sampling sites, and habitat variables of water depth and stream length were measured after each fish sampling. Few or no significant differences in fish abundances for each site were identified among bimonthly sampling periods and years. Abundance variations did not significantly differ before and after typhoon periods in the 9-yr dataset, in typhoon years, or in non-typhoon years. These results indicated that typhoon impacts on the abundances of these 2 mid-water fishes are minor despite the potential for habitat alteration in mountain streams of Taiwan. Mid-water fish in Taiwan may adapt to flow fluctuations in mountain stream by their good swimming performance, and by staying in or quickly dispersing to deeper regions as refuges. Based on the results of this study, typhoons invading Taiwan during the wet season should be cautiously regarded as a natural disturbance. However, floods caused by typhoons which occur in the dry season may still cause reproductive threats to aquatic organisms in Taiwan. Given that global warming may become more serious in the future, greater emphasis should be placed on determining drought impacts on stream organisms in Taiwan as there is currently a lack of academic information and in situ experience. http://zoolstud.sincica.edu.tw/Journals/47.5/xxx.pdf

Key words: Typhoon disturbance, Onychostoma barbatula, Candidia barbata, Taiwan.

*To whom correspondence and reprint requests should be addressed. Tel: 886-7-7172930-7310. Fax: 886-7-6051365. E-mail:shliang@nknucc.nknu.edu.tw

Storms and floods in mountain watersheds and headwater streams can generate

drastic effects on land forms, riparian vegetation, channel morphology, and aquatic

communities (Swanson et al. 1998). Debris flows and landslides caused by floods

can alter stream habitats and cause high mortality in fish species. As a result, a

major flood can modify behaviors (Fitzsimon and Nishimoto 1995) and community

structures of fishes (Power et al. 1985), and can significantly reduce, or sometimes

extirpate, fish from their habitats (Collins et al. 1981). Previous research has

documented fish responses to flood impacts, with those of some extreme events

persisting for years (Murphy and Meehan 1991, Grossman et al. 1998), and also those

fish communities with high resistance or resilience to major floods (Pusey et al. 1993,

Dolloff et al. 1994)

Typhoons are a natural disturbance that commonly appear, with an average of 3.7 per year, in Taiwan from July to early Oct. (Kuo and Wu 1999). Streams in Taiwan are characterized by short lengths, steep gradients, and fast currents. When a

typhoon hits the island, heavy rainfall frequently results in severe flooding, and often causes landslides and debris flows in mountain streams. Although a previous study

which was confined to a mountain stream and examined the effects of a single

typhoon in Taiwan, suggested that severe typhoon-generated floods may significantly

transform habitat structures, the impacts on fish populations could be relatively small

(Tew et al. 2002). The long-term effects of typhoons on fish communities in

mountain streams have been little investigated because of a lack of pre-typhoon data.

In this study, we used a 9-yr database to examine the effects of typhoon disturbances

on the abundances of 2 mid-water fish, Onychostoma barbatula and Candidia barbata,

in a small mountain stream of northern Taiwan.

MATERIALS AND METHODS

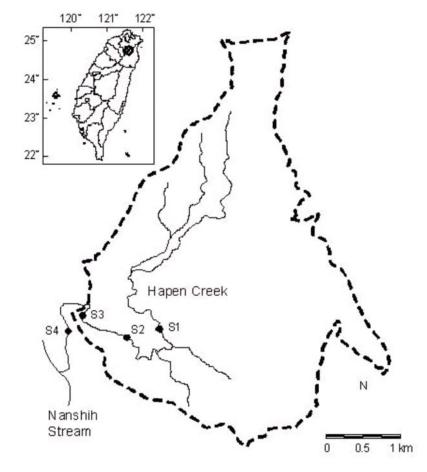
Sampling area and sampling sites

Hapen Creek is a headwater tributary of the Nanshih River at elevations of

500-1200 m (Fig. 1). It is a natural, well-protected mountain stream which rises in

the Fushan Experimental Forest of northern Taiwan. The riparian zone of Hapen

Creek is dominated by natural broadleaf forests. The average gradient of the stream


in the study area is 17.5 m/km (Chang et al. 1998). Monthly air temperature ranged

from 11.5 to 23.7°C over the sampling period. Six fish species have been found in this stream, which is dominated by 2 mid-water species, *O. barbatula* and *C. barbata*

(Chang et al. 1998).

		epted studie	Mean	e epted studie	epted studie	epted tudit	CV (%)	epted studie
Site	Velocity (m	/s) Width (m)	Depth (cm)	Maximum depth (cn	n) Velocity (m	/s) Width (m)) Depth (cm)	Maximum depth (cm)
S 1	1.0	1.00 4.9	100 86.4	17,0	100 pcc 179.61°	24.1	21.3	100 Accescal 17.4 15
S2	0.8	100 6.7	37.7	14.0	12010 83.3	10010 11.1	10027.8	1200 38.8
S 3	0.8	7.2	89.1	23.6	and 110.2	a 13.0	20.9	200 Jailes 14.3
S 4	0.7	6.6	84.7	24.7	89,3	cel 14.5	29.5	17.3
		logi stestut	1091 pt Gtu	1091 ptestut	1001001 cceptestut	ologi cceptestut	1.001091 ccepte stut	100100 ccept Stut

Table 1. Mean values and coefficient of variation (CV) for morphometric variables at 4 sampling sites along Hapen Creek

15

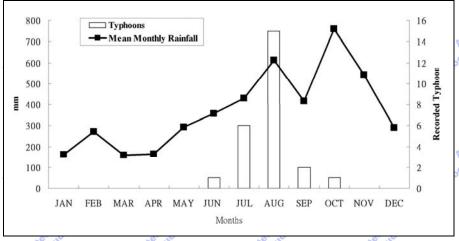
Fig. 1. Fish sampling sites (S1~S4) in Hapen Creek, northern Taiwan. The dotted line denotes the boundary of the Fushan Experimental Forest.

Four sampling sites, S1, S2, S3, and S4, were established from upstream to

downstream (Fig. 1, Table 1). The distances of these 4 sampling sites on Hapen

Creek from the main branch of the Nanshih River were 4.2, 2.6, 1.6, and 0.7 km,

respectively.


Precipitation and typhoon periods

The wet season in the Hapen Creek watershed lasts approximately from June to

Nov., with the remaining time considered the dry season (Shaw et al. 2001) (Fig. 2).

Stream discharge is closely correlated with rainfall and is highly variable in the Hapen

Creek drainage (Shaw et al. 2001).

Fig. 2. Monthly mean rainfall (mm) from 1994 to 2000 in the Fushan watershed. Monthly totals of registered typhoons from 1970 to 2005 were also calculated.

The typhoon period and wet season overlap in the study region (Fig. 2). During

1970-2005, 21 of 26 officially documented typhoons appeared in July and Aug. in

northern Taiwan (Central Weather Bureau 2006). Three typhoons, Herb in 1996,

Prapiroon in 2000, and Sinlaku in 2002, occurred in northern Taiwan during the study

period. These 3 typhoons passed near the sampling area in either August or early

September.

Fish sampling

Fish sampling was conducted on 4 stream sections from 1995 to 2003. At least 2 riffle-pool cycles of each section were sampled, and sampling length generally exceeded 50 m. Bimonthly samples were generally made in each year, except for only 2 samples taken in 1999 and 5 samples in 2003. A battery-powered backpack-mounted electrofisher (150-300 V, 1 A pulsed DC) was used. Fish

sampling on each pool/riffle lasted 15 min, with a total of at least 60 min. In each

collection, at least 2 field assistants collected stunned fish with dip nets. Collected

fish were identified to species, their total length measured, and total individuals counted for each species in the field, and then they were released back to the sampled sections.

Habitat variables

Habitat variables were measured immediately after fish sampling was conducted.

In each pool/riffle area, 3 permanent transects perpendicular to the stream were

delineated. Measured parameters included flow velocity, stream width, water depth,

and maximum water depth within each sampling site. The stream width was

determined by the transect length above the water surface. Water depth and flow

velocity were measured at 1-m intervals along each transect. Water depth was

measured with a wood stick (in cm), and flow velocity was evaluated at 60% depth

from the bottom with a digital current meter (Model 2100, Swoffer).

Data analysis

Data analyses were conducted using SAS (vers. 8.0, SAS Institute Inc.). In this

study, individuals with a total length of > 3.1 mm were used to ensure sampling

efficiency. The total number of collected individuals for each species was divided

by the sampling time to calculate the fish abundance (no. captured/15 min).

Intra- and inter-annual variations in fish abundances at the 4 sampling sites over

9 yr were first examined. At each site, analysis of variance (ANOVA) was used to

evaluate among-year variations in mean fish abundances and within-year variations of

the 6 bimonthly sampling periods. If a significant difference was found, a

Ryan-Einot-Gabriel-Welsh Quotient (REGWQ) post hoc comparison was used to

identify differences among years and among periods.

Because typhoons passed through Taiwan in Aug. and early Sept. during 1970-2005, pre- (Jan.-June) and post-typhoon periods (July-Dec.) were classified for each year. For each fish species, Student's *t*-test was used to compare abundance variations at each site between pre- and post-typhoon periods for the entire sampling period, for typhoon years (1996, 2000, and 2002), and for non-typhoon years. In

addition, paired t-test was used to compare differences in fish abundances for each

site in the July/Aug. and Sept./Oct. periods between typhoon and non-typhoon years.

In Hapen Creek, a previous study indicated that abundances of mid-water fish were more strongly associated with hydrological variables than other environmental

variables like substrate and instream cover (Chuang et al. 2006); thus stepwise

multiple regressions were used to model the correlations between fish abundances and

habitat characteristics including flow velocity, water depth, and stream width. Two

levels of habitat characteristics were selected for the analysis. First, the average and

coefficient of variation (CV) of habitat parameters within each site were used to

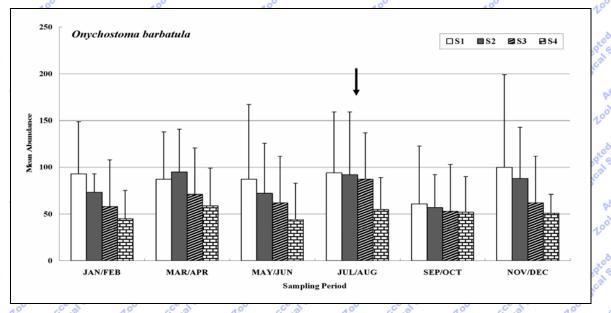
represent the microhabitat complexity of each site for each sampling event. Second,

to construct a temporal variability model, annual CVs of morphometric and velocity

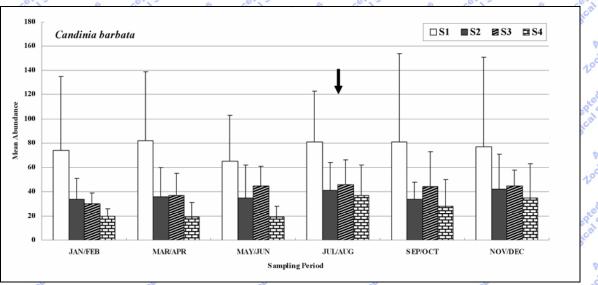
variables were calculated to provide an estimate of habitat stability over time.

Abundances of O. barbatula and C. barbata were used as response variables.

RESULTS


Intra-annual variations in fish abundances

Differences in bimonthly fish abundances at each site were not statistically


significant for either fish species during 1995-2003 (ANOVA, p > 0.05) (Figs. 3, 4).

At each site, neither fish species showed a lower abundance in July/Aug., when

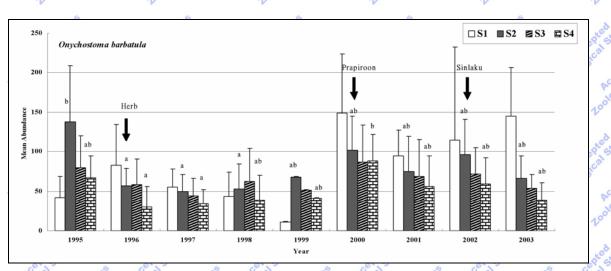
typhoons were frequently recorded, compared to the other sampling months.

Fig. 3. Mean (± 1 SE) bimonthly total abundances of *Onychostoma barbatula* at 4 sampling sites in Hapen Creek from 1995 to 2002. The arrow indicates the most frequent time that typhoon events occurred.

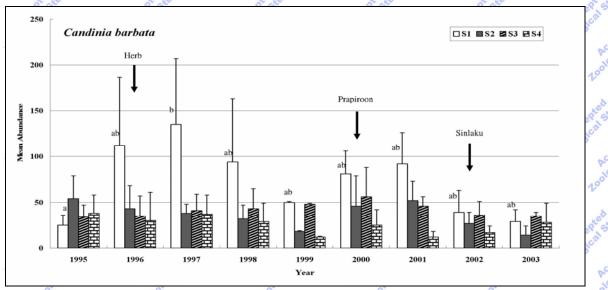
Fig. 4. Mean (± 1 SE) bimonthly total abundances of *Candidia barbata* at 4 sampling sites in Hapen Creek from 1995 to The arrow indicates the most frequent time that typhoon events occurred.

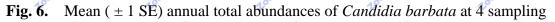
Inter-annual variations in fish abundances

Abundances of *O. barbatula* at sites 2 ($F_{8, 40} = 2.8$, p < 0.05) and 4 ($F_{8, 40} = 2.4$, p


< 0.05) significantly varied among years (Fig. 5). Abundances of C. barbata did not

significantly differ among years except at site 1 ($F_{8, 37} = 3.4$, p < 0.01) (Fig. 6).


However, except for the abundance of *O. barbatula* at site 4 in 1996, neither fish


species displayed significantly lower abundances in typhoon years compared to

non-typhoon years.

Fig. 5. Mean $(\pm 1 \text{ SE})$ annual total abundances of *Onychostoma barbatula* at 4 sampling sites in Hapen Creek from 1995 to 2002. Years with the same letters do not significantly differ. The arrows indicate typhoon events which are labeled with the name of the storm.

sites in Hapen Creek from 1995 to 2002. Years with the same letters do not significantly differ. The arrows indicate typhoon events which are labeled with the name of the storm.

Pre- and post-typhoon variations

Abundance variations of *O. barbatula* did not statistically differ between preand post-typhoon periods over the 9-yr period or between non-typhoon and typhoon years (Table 2). Comparisons of abundances between pre- and post-typhoon periods

of C. barbata showed that they did not significantly differ in typhoon years (Table 2).

Additionally, despite significant differences being found at site 4 over the 9-yr period

and in non-typhoon years, abundances of C. barbata in the post-typhoon period were

greater than those in the pre-typhoon period.

Fish abundances of neither species showed significant differences between typhoon and non-typhoon years in the July/Aug. and Sept./Oct. periods at each site (p > 0.05).

 Table 2.
 Mean (±1 S.E.) abundances of pre- and post-typhoon periods of *Onychostoma barbatula* and *Candidia barbata* at 4 sites in Hapen Creek for the entire sampling period, typhoon years, and non-typhoon years.
 t-test results of species abundances between pre- and post-typhoon periods are also given

1	or certs	1001 ccerals	100th scents	1001	Ce 1 1	1001 ccet 15 1001	seceral 1001 seceral s	15	
	oologit	cologit.	Onychostoma barb	atula	logit	oologit	Candidia barbata		
Sampled years	Site (<i>n</i>)	Pre-typhoon	Post-typhoon	t	p	Pre-typhoon	Post-typhoon	t	p
1995-2002	S1 (46)	58.6 ± 12.5	77.2 ± 15.7	0.19	> 0.05	51.8 ± 11.1	63.1 ± 12.9	0.27	> 0.05
	S2 (49)	76.6 ± 42.1	79.2 ± 53.9	0.31	> 0.05	35.1 ± 21.9	39.1 ± 22.6	0.62	> 0.05
15	S3 (49)	63.4 ± 30.9	67.0 ± 40.7	0.35	> 0.05	37.4 ±15.5	44.9 ± 20.5	1.43	> 0.05
	S4 (49)	49.4 ± 35.7	52.9 ± 30.2	0.37	> 0.05	19.1 ± 8.91	33.2 ± 24.2	2.70	< 0.01
	ed dies	ed dies	ed dies	6	dies	ed dies	ed dies ed dies		
Non-typhoon years	S1 (30)	85.8 ± 53.4	53.5 ± 47.3	o 1.74	> 0.05	81.3 ± 57.7	71.4 ± 65.9	0.44	> 0.05
	S2 (31)	80.2 ± 43.8	71.9 ± 60.6	0.43	> 0.05	39.4 ± 23.6	32.6 ± 17.5	0.90	> 0.05
· ·	S3 (31)	60.2 ± 31.7	62.5 ± 38.8	0.17	> 0.05	39.2 ± 15.4	42.0 ± 12.9	0.54	> 0.05
	S4 (31)	40.8 ± 32.0	52.9 ± 24.3	1.17	> 0.05	19.7 ± 9.8^{1}	36.3 ± 23.3	2.61	< 0.05
	predudie.	pted tudie	oted sudie	et ed	studie	ated sudie	ed tudie		
Typhoon years	S1 (16)	101.0 ± 73.0	139.8 ± 98.3	0.90	> 0.05	59.9 ± 33.2	101.2 ± 65.2	1.66	> 0.05
15	S2 (18)	80.1 ± 40.1	92.4 ± 45.2	0.61	> 0.05	29.9 ±15.1	52.7 ± 31.7	2.06	> 0.05
	S3 (18)	70.3 ± 39.5	74.6 ± 38.3	0.23	> 0.05	100 ¹⁰⁰ 37.7 ± 20.9	49.7 ± 29.7	1.00	> 0.05
	S4 (18)	59.7 ± 38.2	57.9 ± 41.4	0.09	> 0.05	16.9 ± 8.7	34.7 ± 28.7	1.95	> 0.05
15	Accepted study	Jes Accepted Study Accepted 100 Accepted Study Accepted Accepted Study Accepted Accepte	Jolies Accepted Studies 1001091011 Studies 1001091011 Studies 1001091011 Studies 10010	200000000 P	ccepted tubles 1	Loological Studies Loological Loological Loological Loological Studies Loological Loolog	Accepted studies accepted	1 ⁶⁵	
V	Accepted sudies	Jes Loocapted suales	utes Accepted sumes to to the sum and the	200109Cale	ccepted sudies	Loological Studies Loological Studies Loological Loological Studies Loological Studies Loological Loological Studies Loological Loological Loological Loological Studies Loological Loological Studies Lool	edunates Astrones Accepted studies Accepted studies Loncost a studies Loncost a studies Loncost a studies Loncost a studies Loncost a studies	1 ⁸⁸⁵	
	Accepted studies	hes Accepted studies	idies hocented unites	as Accepted	cepted studies	Accepted studies Accept	eduales accepted tubes	165	

Habitat Associations

Within-habitat variability model

Onychostoma barbatula was correlated with shallow and narrow waters that showed little morphometric variation (Table 3). A multiple regression model indicated that abundances of *O. barbatula* were negatively associated with average width and average depth of the stream, and the CVs of width and depth. None of the other variables was significantly associated with abundances of *O. barbatula* (p> 0.15). The suggested model explained 25.5% of the spatial variations in abundances of *O. barbatula* in Hapen Creek.

Candidia barbata not only preferred shallow and narrow waters, but also deeper regions with high variations in water depth. Abundances of *C. barbata*

were best predicted by a multiple regression model that included positive

associations with maximum water depth of the stream and the CV of water depth

and negative associations with average width and average depth of the stream. The suggested model explained 21.0% of the spatial variations in abundances of *C*.

barbata in Hapen Creek.

Table 3. Results of stepwise multiple regressions relating *Onychostoma barbatula* and *Candidia barbata* abundances and morphometric variables of 4 sites along Hapen Creek. The microhabitat model was based on the mean and coefficient of variation (CV) of morphometric variables within each site. The temporal variability model was based on the annual means and CVs of morphometric variables. Only those variables that were statistically significant (p < 0.15) in the models are shown. No variable met the 0.15 significance level for entry into the temporal variability model of *Candidia barbata*

olo	olo	010-	010-	olo	and a second
Onychostoma barbatula	Parameter	Partial R ²		1º p	10
Microhabitat model	2005 -1.11 -1.20.68 1000000	epted studie	eptedudie	< 0.01	Loological Studies
Mean width (m)	-120.68	0.1463 ed unico	21.37	< 0.01	Loological Studies Li
Mean width (m) Mean depth (cm)	Accession -1.11 Accession	0.0377	5.09	1000 < 0.01	Lool Accession 15
Mean depth (cm) 100 ¹⁰ pccessis ²⁰ 100 ¹⁰ Width CV 100 ¹⁰⁹	120.68 100 -120.68	0.0229	12.06	10010001	200103
Denth CV	preducties -41.92	0.0479	3.55	< 0.01	ed dies
Temporal variability model	ed optestudie hogica optestud	Loological Accepted Studies	Loologica Accepted sugie	Loological Accepted tudie	Lookal accepted subjes
Depth CV	Loological Star 1.16 Loological Star	0.11 accenter such	3.72	100100 0.06	200 Accelerate 15
100t	10010 10010	10010	10000	10010 0100	Lonogical stores the studies
Candidia barbata	Parameter et al	Partial R ²	ated Fes	oted tudies	ted udies
Microhabitat model	-7.74 0.65	Accession cented unlies	10000 29.84	100000 0000000000000000000000000000000	Loological St. Accepted subles
Mean width 1000 post 1000	prostation -7.74 prostation -7.74	0.1508	29.84	10000 <0.01	Loold Accessist 1
Mean width 100 pcc com 100 Maximum depth (cm) 1000	1000000 0.65 1000000000000000000000000000000000000	0.0289	6.04	100000001	200105
Mean depth	-2.58	0.0125	2.54	0.11	d lies
Depth CV	10.32 consecutor	0.0174	Certe 3.5	0.06	ceptestuc
Loological Strates Loological St	Loologic Loologic	Loologi Accente Stur	Loological Accepted sugar	Loologica Accepted studies	Lonogical Studies Lonogical Studies Accepted studies Lonogical Studies
10000	Pred surfes cal surfes hccatcated surfes hccatcated surfes hccatcated surfes hccatcated surfes hccatcated surfes hccatcated surfes hccatcated surfes	ses Accepted sudies Loological Sudies	1.001091Cal Studies	20010-2	100000 Accepted whiles
Accepted suites Acce	ped studies Accepted sudies	ies Accepted suites	Accepted sudies	Accepted suites	Accepted sudies

Temporal variability model

The results of the multiple regression analysis revealed that no variables of

temporal variation were significantly correlated with C. barbata abundances (Table

3). Abundances of *O. barbatula* were most often correlated with waters

demonstrating high variability in depth (Table 3). The suggested model explained

approximately 11.0% of the variations in the spatial abundances of O. barbatula

among years.

DISCUSSION

Impacts of typhoons on mid-water fish abundances

In Taiwan, strong water currents in mountain streams create series of deep

pools connected by riffles and runs. Although high oxygen concentrations and

diverse feeding, resting, and breeding habitats exist in mountain streams of Taiwan

(Han et al. 2000), fish have to adapt to a wide range of dynamic flow conditions

during floods and muddy waters caused by downpours in the rainy season and

typhoon periods.

Typhoons commonly occur in summer in subtropical and tropical regions of

Asia (Wu and Kuo 1999). Commonly appearing from July to early Oct. in Taiwan,

floods caused by typhoons have long been considered a major disturbance of habitat

structure and animal communities in streams, especially in mountainous regions.

As documented by Tew et al. (2002), pools were significantly smaller, riffles were

larger, debris and mud filled the stream channels, and water turbidity was greatly

elevated in Qishan Stream of southern Taiwan after typhoon Herb. Headwaters,

upper stream habitats, and mountain streams are more susceptible to structural

modifications caused by typhoons.

Although previous studies documented how typhoons greatly modify habitat structures, the results of this study indicated that typhoons' impacts on mid-water

fish abundances in Hapen Creek, a subtropical mountain stream, might be

relatively minor. Intra- and inter-annual abundances of O. barbatula and C.

barbata in Hapen Creek displayed almost no significant variations. Comparisons

between pre- and post-typhoon abundances within typhoon and non-typhoon years

also displayed almost no significant variations for either fish species.

Fish communities commonly recover after a flood, but the required time for

the recovery varies. Pre-flood assemblages were reestablished within 8 mo in an

Ozark stream (Arkansas, USA) following a catastrophic flood (Matthews 1988).

In Kings Creek of Kansas, USA, a tall-grass prairie stream, recovery of the

headwater fish population was also rapid, within 3 mo (Fritz et al. 2002).

Compositional changes in the fish community in Qishan Stream of southern

Taiwan were not detectable 14 mo after typhoon Herb, the most severe typhoon to

occur since 1970 in Taiwan (Wu and Kuo 1999, Tew et al. 2002). The 14-mo

recovery time may be overestimated because it was impossible to sample

immediately after Herb due to destruction of roads. The results of this study

suggest that typhoon impacts on mid-water fish abundances are minor based on the

comparison of fish abundances 6 mo before and after typhoons. Additionally, no

significant difference was found in either the July/Aug. or Sept./Oct. periods

between typhoon and non-typhoon years. Based on those 2 observations, the

recovery time of mid-water fish abundances after a flooding disturbance, at least in

mountain streams of northern Taiwan, could be shorter than 14 mo, possibly only

2-6 mo.

Adaptive mechanisms of mid-water fish in mountain streams

Abundances of both fish species being negatively correlated with stream width

and depth indicate that both are adapted to mountain streams with habitats of

fluctuating flow regimes and morphometry. However, O. barbatula had greater

abundances than C. barbata in Hapen Creek (Figs. 3, 4). Candidia barbata, with a

laterally compressed body and larger pectoral fin, is more specialized and prefers

slow-moving pools compared to O. barbatula, with its cylindrical body and smaller

pectoral fins (Chuang et al. 2006). Based on ecomorphological characteristics,

Chuang et al. (2006) postulated that C. barbata was mainly distributed in

mid-stream sections because of its weaker swimming performance, while O.

barbatula is able to dominate in creeks at higher elevations because of its better

swimming ability. This postulation was supported by the observation that O.

barbatula had greater abundances than C. barbata within and among years in Hapen

Creek in this study.

The findings that O. barbatula abundances were negatively associated with

variations in stream width and water depth suggest that this fish species might not

adapt well to systems with fluctuating morphometry. This might explain the

decline of O. barbatula abundances after typhoons, as we observed after typhoon

Herb.

In contrast to O. barbatula, C. barbata abundances were positively correlated

with maximum depth and water depth CV. In addition to fast currents, montane

drainage basins typically experience rapid rises and falls during floods in the rainy

season, localized rainstorms, and typhoons (Gupta 1988)." Given its weaker

swimming ability compared to O. barbatula, C. barbata may adapt to hydrological

dynamics in mountain streams by staying in deeper habitats as refuges or quickly

dispersing to refuges through flooded corridors. In Quebrada Prieta of the Luquillo

Experimental Forest, Puerto Rico, Covich et al. (1991) reported that atyid shrimp

resisted storm flows best when in wide, deep pools. In Taiwan, Tew et al. (2002)

observed that seasonal floods in mountain streams usually provide deepened

waterways between pools. Candidia barbata may migrate and move from shallow

to deeper habitats through such waterways to reduce flooding impacts. Using a

different adaptation mechanism from O. barbatula, C. barbata may be able to

maintain its population abundances in mountain streams despite its weaker

swimming performance.

Based on the results of this study, we posit 2 mechanisms which might be

adopted by mid-water fish species to adapt to hydrologic dynamics in mountain

streams of Taiwan. First, benefiting from its morphological advantages, O.

barbatula uses its better swimming performance to endure the fast and variable

currents; however, this species is limited in tolerating hydrologic fluctuations.

Compared to O. barbatula, C. barbata, despite its weaker swimming ability, has

greater flexibility in enduring hydrologic and morphometric variability by staying in

deeper water and/or quickly dispersing to refuges during flooding disturbances.

Management implications

The rainy season in northern Taiwan occurs from June to Nov. The typhoon period in this region is also concentrated in July and Aug., with an average of

400-600 mm rainfall falling monthly. Based on the overlap of the wet season and

typhoon period and the results from this study, researchers should be cautious in

defining typhoons as a natural disturbance to aquatic organisms in mountain streams

during wet season of Taiwan.

We generally expect that storm-generated flooding in mountain streams of subtropical areas will change biotic abundances and community compositions by

altering food supplies and habitat structure (Covich et al. 1991 2006). With

constricted stream widths and shallow water depths, heavy rainfall events could

have frequent and long-lasting effects on high-gradient streams. Gupta (1988)

indicated that rainfall events in the tropics are characterized by very large pulses,

and these intense rains are often associated with hurricanes (typhoons). Predictions

differ regarding the effects of global warming and El Niño periods on the frequency

and intensity of future typhoons and the spatial distribution of rainfall events (Gray

1990). If typhoons do become more frequent and possibly of greater intensity,

their effects on aquatic organisms of mountain streams are likely to become more

important, and may differ from what we report in this study. Another possibility is

that the spatial rearrangement of rainfall amounts may generate drought events and

other negative impacts like greatly reduced habitat quality and availability by

decreasing pool volumes and hydrologic connectivity of flowing waters (Bencala

1993, Covich et al. 2000, Pringle 2003). Due to a shortage of available information

and experience, more emphasis should be placed on conducting related research and

evaluating drought impacts on aquatic organisms in montane streams of Taiwan.

Acknowledgments: We thank the Taiwan Forestry Research Institute, Taipei, Taiwan for providing facilities and accommodations at the Fushan Research Center,

Ilan County. We also thank the anonymous reviewers who provided valuable

comments on this manuscript. We are grateful to the research assistants and

students of the Biodiversity Research Lab of the Department of Life Science,

National Taiwan University, Taipei, Taiwan for help with fieldwork. This study

was supported by the National Science Council of Taiwan

(NSC86-2621-B-002-012-A07, NSC87-2621-B-002-013-A07,

NSC88-2621-B-002-011-A10, and NSC95-2313-B-017-002-MY3).

REFERENCES

Bencala KE. 1993. A perspective on stream-catchment connections. J. North Am. Benthol. Soc. 12: 44-47.
Central Weather Bureau. 2006. Typhoon database. Available at http://rdc28.cwb.gov.tw/. Accessed 12/29/2007.

Chang SH, PF Lee, YS Lin. 1998. Reproductive biology of Varicorhinus barbatulus in Hapen Creek, Fushan, Taipei County, Taiwan. Ann. Taiwan Mus.
41: 53-69. (in Chinese)

Chuang LC, YS Lin, SH Liang. 2006. Ecomorphological comparison and habitat preference of 2 cyprinid fishes, *Varicorhinus barbatulus*, and *Candidia barbatus*,

in Hapen Creek of northern Taiwan. Zool. Stud. 45: 114-123.
Collins JP, C Young, J Howell, WL Minckley. 1981. Impact of flooding in a Sonoran stream, including elimination of an endangered fish population (*Poeciliopsis o. occidentalis*, Poecilidae). Southwest Nat. 26: 415-423.
Covich AP, TA Crowl, T Heartsill-Scalley. 2006. Effects of drought and

hurricane disturbance on headwater distribution of palaemonid river shrimp (*Macrobrachium* spp.) in the Luquillo Mountains, Puerto Rico. J. North Am. Benthol. Soc. **25:** 99-107.

Covich AP, TA Crowl, SL Johnson, D. Varza, DL Certain. 1991. Post-hurricane Hugo increases in atyid shrimp abundance in a Puerto Rican montane stream. Biotropica 23: 448-454.

Dolloff CA, PA Flebbe, MD Owen. 1994. Fish habitat and fish populations in a southern Appalachian watershed before and after Hurricane Hugo. Trans. Am.
Fish. Soc. 123: 668-678.

Fitzsimons MJ, RT Nishimoto. 1995. Use of fish behavior in assessing the effects of hurricane Iniki on the Hawaiian island of Kaua'i. Environ. Biol. Fish.

43: 39-50.

Fritz KM, JA Tripe, CS Guy. 2002. Recovery of three fish species to flood and seasonal drying in a tall grass prairie stream. Trans. Kan. Acad. Sci. 105: 209-218.

Gray WM. 1990. Strong association between West African rainfall and U. S. rainfall of intense hurricanes. Science **249**: 1251-1256.

Grossman GD, RE Ratajczak, M. Crawford, MC Freeman. 1998. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecol. Monogr. 68: 395-420.

Gupta A. 1988. Large floods as geomorphic events in the humid tropics. *In* VR Baker, RC Kochel, PC Patton, eds. Flood geomorphology. New York: J Wiley, pp. 301-305.

Han CC, KS Tew, IS Chen, LY Su, LS Fang. 2000. Environmental biology of an endemic cyprinid, *Varicorhinus alticorpus*, in a subtropical mountain stream of Taiwan. Environ. Biol. Fish. **59**: 153-161.

Matthews WJ. 1988. Fish faunal structure in an Ozark stream: stability,

persistence and a catastrophic flood. Copeia **1986:** 388-397.

Murphy ML, WR Meehan. 1991. Stream ecosystems. Bethesda, MD:

American Fisheries Society Special Publication 19.

Power ME, WJ Matthews, AJ Stewart. 1985. Grazing minnows, piscivorous bass

and stream algae: dynamics of a strong interaction. Ecology 66:1448-1456.Pringle CM. 2003. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 17: 2685-2689.

- Pusey BJ, AH Arthington, MG Read. 1993. Spatial and temporal variation in fish assemblage structure in the Mary River: the influence of habitat structure.
 Environ. Biol. Fish. 37: 355-380.
- Swanson FJ, SL Johnson, SV Gregory. SA Acker. 1998. Flood disturbance in a forested mountain landscape. BioScience 48: 681-689.
- Tew KS, CC Han, WR Chou. LS Fang. 2002. Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environ. Biol. Fish. 65: 457-462.
- Wu CC, YH Kuo. 1999. Typhoons affecting Taiwan current understanding and future challenges. Bull. Am. Meteorol. Soc. 80: 67-80.