
 
 

 

  
Abstract—Single-nucleotide polymorphisms (SNPs) are the 

most common type of DNA sequence variation. An SNP is the 
substitution of a single base in the sequence for one that is 
different from that present in the majority of the population. 
SNPs were very important for personalized medicine, especially 
for association studies. Each SNP has an ID number (rs#) in 
dbSNP of NCBI, providing the information for SNP genotype and 
frequency of many populations. However, many previous 
association studies provide only the SNP nucleotide position or 
primer sequences, without giving an SNP ID of NCBI. In this 
study, we built the dbSNP, SNP fasta and SNP flanking marker 
databases for the rat, mouse and human organisms from the 
NCBI databases. Boyer-Moore algorithm, dynamic programming 
method and database technologies were applied and integrated to 
identify the SNP IDs within input sequences. Therefore, we 
proposed a novel method to provide efficient, exact and stable 
output for SNP IDs discovery from a sequence. It also constitutes 
a novel application to identify SNP IDs from the literatures for 
systematic association studies. 
 

Index Terms—SNP, SNP flanking marker, Boyer-Moore 
algorithm, dynamic programming, database. 
 

I. INTRODUCTION 
Single nucleotide polymorphisms (SNPs) are the most 

common polymorphisms among the genomes of many species. 
The definition of SNP is a variation of the DNA sequence at the 
frequency larger than 1% allele of a population. Recently, 
SNPs are widely applied to personalized medicine [1, 2]. Many 
methodologies are reported or reviewed for genetic association 
studies [3-5], however, most of the previously reported SNPs 
are written in nucleotide/amino acid position formats without 
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providing an SNP ID. For example, C1772T and G1790A 
SNPs in exon 12 of the hypoxia inducible factor-1alpha (HIF) 
gene are reported to be associated with the renal cell carcinoma 
phenotype [6], and TNF gene polymorphisms -857, -863, and 
-1031 in the TNF gene are analyzed in the osteoporosis 
association study [7]. Without the SNP ID of NCBI, the 
associated SNPs are hard to be analyzed or organized to 
systemic databasing.  

Recently, SNP-BLAST [9] was developed by coupling the 
NCBI dbSNP [8] with a BLAST program of NCBI. 
SNP-BLAST is designed to perform the BLAST function 
among various SNP databanks for many species. The BLAST 
program of NCBI uses heuristic algorithms, which are less 
time-consuming and simple, to search for homologous 
sequences across species in GenBank. However, it cannot 
provide exact SNP IDs by inputting sequences. When using the 
blastn function of SNP-BLAST with or without megablast to 
perform BLAST for a partial sequence, results do not always 
show the SNP rs# within the input sequence. Even using 
megablast with IUPAC format sequences, it often shows “No 
significant similarity found”, such as rs8169551 (rat), 
rs7288968 (human) and rs2096600 (human) etc. BLAT [10] in 
UCSC Genome Browser uses the index to find regions in the 
genome likely to be homologous to the query sequence. In our 
experiences, BLAT is more accurate and faster than other 
existing alignment tools. It rapidly scans for relatively short 
matches (hits), and extends these into high-scoring pairs 
(HSPs). However, it usually hits so many sequences distributed 
in different chromosomes and sometimes the result doesn’t 
show the originally entered rs# in selecting the option of the 
SNPs of the title is “Variation and Repeats”, such as rs8167868 
(rat), rs2096600 (human), and rs2844864 (human)…etc. 
Previously, we utilized a Boyer-Moore algorithm [11] to match 
sequences with the SNP fasta sequence database for the human, 
mouse and rat genomes. However, the problems of nucleotide 
change, insertion or deletion in sequences were not addressed 
in this method. This method cannot provide the SNP IDs. 
Accordingly, in-del (insertion and deletion) sequences were not 
acceptable. In order to solve this problem, a dynamic 
programming method [12] was chosen. However, this method 
occupies too much memory and is time-consuming when 
applying to the huge human SNP database; therefore it is 
impracticable. Finally, we took notice of Uni Marker [13] and 
generated the following idea. We used SNP flanking markers 
that are extracted from SNP fasta sequence and then they 
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combined Boyer-Moore algorithm to search markers in the 
query sequences to identify possible SNPs. Then, we employed 
a dynamic programming to validate these SNPs to obtain exact 
SNP IDs. The proposed method greatly reduces matched time 
and memory space. The experimental results show that our 
proposed approach is efficient, exact and stable. Thus, it is a 
valuable approach when identifying SNP IDs from the 
literature, and could greatly improve the efficiency of 
systematic association studies. 
 

II. METHODS 

This integrated approach is proposed for effective, stable and 
exact. It is based on SNP fasta database, and using Boyer- 
Moore algorithm and dynamic programming method. The 
following will illustrate the implementation. 
 
2.1 The application of the Boyer-Moore algorithm 

We use a Boyer-Moore algorithm to search for SNP flanking 
markers in a sequence. The Boyer-Moore algorithm usually 
matches from right to left, which is in contrast to the usual 
methods. However, the average search efficiency of the 
Boyer-Moore algorithm is superior to Knuth-Morris-Pratt 
algorithms and Brute Force algorithms. These three methods 
are briefly described and compared below. 
 
(1) Brute Force algorithms- match forms from left to right and 
one by one for all text. If some error occurs in the matching 
process, the matching pattern window will shift one position in 
order to match the next character in the text. It will take the time 
complexity is O(mn). 
 
(2) Knuth-Morris-Pratt algorithms- match from left to right. In 
the process, the phase in advance will take O(m) space 
complexity and time complexity and the phase of search will 
take O(m+n) time complexity. 
 
(3) Boyer-Moore algorithms- match from right to left. The 
pretreatment stage take O(m+σ ) space and time complexity. 
σ  is the bad-character shift function which is stored in the size 
of table and the best perform efficiency is O(n/m) time 
complexity. 
 

Boyer-Moore algorithms use a bad-character shift function 
and a good-suffix shift function. Fig. 1 describes the process of 
the Boyer-Moore algorithm’s bad-character shift, in which T 
represents a text, and P represents the pattern to be aligned. As 
shown in Fig. 1-(1), P is aligned from left to right; 
P(12)=T(13),P(11)=T(12), but P(10) ≠ T(11), which means the 
position within P(10) and T(11) mismatched. By using a 
bad-character shift rule, the mismatch can be shown to occur in 
P, in our case P(10). Then, searching from the left of P(10) , the 
same character mismatch is shown for T(11), i.e. P(7)= T(11). 
At this stage, the bad-character shift rule will move the P 
window and align P(7) to T(11) as shown in Fig. 1-(2). After 

that, the alignment from right and left of P(12) and T(16) will 
start again. 
 

 
Fig. 1. The bad-character shift process 

 
The good-suffix shift rule is divided into a good-suffix shift1 

and a good-suffix shift2. The process for the good-suffix shift1 
is described in Fig. 2. In Fig. 2-(1), P is aligned from right to 
left, P(12)=T(13), P(11)=T(12), but P(10) ≠ T(11). This means 
that a mismatch is present within P(10) and T(11). Good-suffix 
shift1 then searches from the right of the P mismatch position, 
that is from the right of the character of P(10) and finds the 
match T(12, 13), which is a suffix string of P, P(12, 13). Also, 
the right character of the P suffix string can not be the same as 
the mismatch P(11). As shown in Fig. 2-(1), P(8,9) is the suffix 
string found, but since P(7)=P(10), the search process 
continues from the left until P(5,6) and P(4)≠P(11) are found. 
The good-suffix shift1 rule will then move the P window and 
align P(4) to T(11) as shown in Fig. 2-(2). However, if no suffix 
string can be found in P, but the prefix string is the suffix 
substring of the suffix string in P, good-suffix shift2 is 
implemented. Fig. 3-(1) shows that P(8) mismatches T(9), and 
P(9, 12) is the suffix  string of P. The suffix  string P(1, 3)  
matches the suffix  string P(9, 12), i.e. P(1, 3)=P(10, 12)=T(11, 
13). Therefore, the good-suffix shift2 rule will move the P 
window and align P(1) to T(11) as shown in Fig. 3-(2). After 
that, alignment from right to left of P(12) and T(22) continues. 
 

 
Fig. 2. Good-suffix shift1 process 
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Fig. 3. Good-suffix shift2 process 

 
When using a Boyer-Moore algorithm to select possible 

SNPs from the SNP fasta sequences database by query 
sequence, the following three conditions have to be considered: 
 
Condition 1. Sequence only match SNP flanking marker 3’, but 
SNP flanking marker 5’ is mismatched. The SNP flanking 
marker 5’ could possibly appear near the left side of the 
sequences, it resulted in SNP flanking marker 5’ could not been 
matched, as shown in Fig. 4. This condition will be candidate of 
possible SNPs. 
 

 
Fig. 4. Sequence only matches to SNP flanking marker 3’. 
 
Condition 2. Sequence only match SNP flanking marker 5’, but 
SNP flanking marker 3’ is mismatched. The SNP flanking 
marker 3’ may appear at the right side of the sequences, it 
resulted in SNP flanking marker 3’ could not been matched, as 
shown in Fig. 5. This condition will be candidate of possible 
SNPs. 
 

 
Fig. 5. Sequence only matches to SNP flanking marker 5’. 
 
Condition 3. Sequence matches to SNP flanking marker 5’ and 
SNP flanking marker 3’. In this case, two possibilities exist: (a) 
a SNP exists within the sequences, as shown in Fig. 6. It will be 
candidate of possible SNPs. (b) a SNP does not exist within the 
sequences, but SNP flanking markers exist, as shown in Fig. 7 
and Fig. 8. In Fig. 7 and Fig. 8, the SNP flanking marker 5’ and 
the SNP flanking marker 3’ are separated from each other, so 
the existence of a SNP is impossible. We eliminate it from the 
candidate of possible SNPs. 
 

 

 
Fig. 6. SNP exists within sequence. 

 

 
Fig. 7. SNP does not exist within sequence, because the 

distance of the matched SNP flanking markers. 
 

 
Fig. 8. SNP does not exist within sequence, because the 

orientation and distance of the matched SNP flanking markers. 
 

Possible SNPs will be selected by a criterion. The 
discriminable criterion is presented below and illustrated in 
Fig. 9. 

 
if ((marker 5’ position + marker 5’ length + 1) == marker 3’ 
position)       (1) 
 
If above formula (1) is confirmed, the sequence will possibly 
contain a SNP that corresponding one of SNP fasta sequences 
database. The “+1” of this formula (1) represents the base of the 
SNP. 
 

 
Fig. 9. Discriminable criterion for possible SNPs. 

 
2.2 The Revise of SNP flanking marker 

Because of the exact character matching of a Boyer-Moore 
algorithm, we must consider three conditions when applying 
SNP flanking markers. These three conditions are illustrated 
below: 
 
Condition 1. SNP flanking marker 5’ has one SNP and upward 
in it, which will result in mismatch using Boyer-Moore 
algorithm. And the SNP flanking marker 3’ is at the right side 
of the sequence and mismatched. It is illustrated in Fig. 10. This 
condition is not any SNPs found. 
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Fig. 10. SNP flanking marker 5’ contains SNPs in it and SNP 
flanking marker 3’ is not matched to the sequence, it is not any 
SNPs found. 
 
Condition 2. SNP flanking marker 3’ has one SNP and upward 
in it, which will result in a mismatch using Boyer-Moore 
algorithm. And the SNP flanking marker 5’ is at the left side of 
the sequence and mismatched. It is illustrated in Fig. 11. Again, 
no SNPs is found in this condition. 
 

 
Fig. 11. SNP flanking marker 3’ contains SNPs in it and SNP 
flanking marker 5’ is not matched to the sequence, it is also no 
SNPs found. 
 
Condition 3. Both SNP flanking marker 5’and SNP flanking 
marker 3’ contain SNPs within them. This will result in no 
markers to match using Boyer-Moore algorithm, but actually 
SNP markers exist in sequence as shown in Fig. 12. It still no 
SNP is found. 
 

 
Fig. 12. Both SNP flanking marker 5’ and SNP flanking marker 
3’ contain SNPs within them, but no SNP is found. 
 

In order to improve the above faults, we constructed a 
revised SNP flanking marker table. It uses the SNP 
chromosome position from dbSNP to find existing SNPs within 
the SNP flanking marker 5’and SNP flanking marker 3’. For 
example, under Condition3 shown in Fig. 12, the flanking 
marker 5’ of SNP2 contains SNP1 and flanking marker 3’ of 
SNP2 contains SNP3, respectively. A search process for the 
flanking markers of SNP2 using the Boyer-Moore algorithm 
will result in a failure. Therefore, we through the revised SNP 
flanking marker table to correct the condition. As shown in 
Table 1, the flanking marker 5’ of SNP2 contains SNP1 and the 
flanking marker 3’ of SNP2 contains SNP3. In this case, the 
SNP will be considered a possible SNP. 
 
Table 1. Example of the revised SNP flanking marker table 

SNPs SNP flanking 
marker 5’ 

SNP flanking 
marker 3’ 

SNP1 none SNP2 
SNP2 SNP1 SNP3 
SNP3 SNP2 none 

 

2.4 Alignment using Dynamic programming 
Through the steps described above, possible SNPs within 

query sequence can be retrieved. However, the query sequence 
must match with the fasta sequence, only SNP flanking markers 
matched can not prove the existence of a SNP in sequences. If 
nucleotide bases outside the SNP flanking marker can not be 
matched to the SNP fasta sequences, the above effort is futile. 
The SNP flanking marker is too short to make a complete 
estimate. Consequently, we employ a dynamic programming 
method to match with fasta sequences of the possible SNPs in 
order to discover valid SNPs. The dynamic programming 
method contains an error tolerant function which resolves 
problems associated with changes, insertions or deletions in 
sequences. The corresponding SNP fasta sequences will 
provide the SNP ID. It works as follows. First, the SNP fasta 
sequences and the input sequences of the suffix edit distance 
E(i, j) is calculated. Suppose Tj is the SNP fasta sequences, j = 
1, 2, …, n, where n is the SNP fasta sequences’ length. Pi is a 
user’s input sequences, i = 1, 2, …, m, and m is the user’s input 
sequences length. The procedure for the suffix edit distance is 
given below. 
 

// initialization
1:  for i←0 to m do
2:    E(i, 0)←i
3: next i
4:  for j←0 to n do
5: E(0, j)←0
6: next j

// suffix edit distance E(i, j)
7:  for i←1 to m do
8: for j←0 to n do
9: if (T(j) = P(i)) then
10: E(i, j)←(i-1, j-1)
11: else
12: min←MIN[E(i-1, j), E(i, j-1)]
13: E(i, j)←min + 1
14: end if
15:    next j
16: next i
17: return E(i, j)  

 
In order to obtain partially homologous sequences, the 

maximum tolerance error rate for the input sequences is 
accepted. Once the error count is equal to or smaller than the 
maximum tolerance error rate, the input sequences is aligned 
successfully to the SNP fasta sequences. 
 
Maximum tolerant error number = (input sequence length)* 
(tolerant error rate)       (2) 
 

The homologous sequences can be found by using 
previously obtained suffix edit distances E(i, j) and the 
maximum tolerance error number based on backward dynamic 
programming. Once the suffix edit distance E(i, j) is smaller 
than or equal to the maximum tolerance error number, it is 
processed. The backward sequences are the homologous 
sequences that fit with the analogue. For example, if input 
sequences contain the bases (nucleotides) TAGC, the 
maximum tolerance error rate is 20%. When the input 
sequences are aligned with SNP fasta sequences of 10 bps, e.g. 

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_17
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



 
 

 

TGGATACCAT, the maximum tolerance error number is 10 * 
0.2 = 2. In other words, only two or fewer error alignments are 
allowed in this case (Fig. 13). The boldface arrows in Fig. 13 
indicate the output of an agreeable homologous alignment; the 
homologous sequences are (1)TG (2)TGG (3)TGGA and 
(4)TA. 
 

 
Fig. 13. Homologous alignment and possible homologous 
sequences 

III. RESULTS AND DISCUSSION 
This research utilizes the NCBI SNP [14] rs_fasta sequences 

database, which contains the Human 
(ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/), Mouse 
(ftp://ftp.ncbi.nih.gov/snp/organisms/mouse_10090/), and Rat  
(ftp://ftp.ncbi.nih.gov/snp/organisms/rat_10116/) genomes. To 
implement the proposed method, a SNP flanking marker 
database must be built with data from the SNP fasta sequences 
database. In order to ensure that exact SNP IDs can be found, 
the selection of the length of the SNP flanking marker is 
important. When using shorter SNP flanking markers, possible 
SNPs are more rapidly identified by using Boyer-Moore 
algorithm, but many of the select SNPs are insignificant. These 
insignificant SNPs will increase the load for the following 
process of determining exact SNP IDs. Longer SNP flanking 
marker will fail to obtain SNP IDs using the Boyer-Moore 
algorithm, because sequence may contain changes, i.e. an 
insertion or a deletion, or long markers may contain SNPs with 
high frequency. Therefore, this research adopted a length of 10 
bps of SNP flanking sequences of the fasta database as a 
standard for the SNP flanking marker length. Although, the 
marker length influences the matching results, it is 
compensated by the revised SNP flanking marker table that we 
will introduce following. Chromosome position of the table 
SNPContigLoc in dbSNP [8] b126 was employed to find SNPs 
within the SNP flanking marker, and then build the revised 
SNP flanking marker table. 
 

The proposed approach using Microsoft Windows XP, a 
3.4G MHZ processor, 1GB of RAM memory, and JRE (Java 
Runtime Environment) with a maximum JAVA heap size of 
800MB to discover SNP rs28909981 [Homo sapiens]. We 
mainly aimed at the following three sequences: 
 
 

Sequence 1. 
AAGAGAAAGTTTCAAGATCTTCTGTSTGAGGAAAAT
GAATCCACAGCTCTA 
 

Sequence 2. 
AAGAGAAAGTTTCAAGATCTTCTGTCTGAGGAAAAT
GAATCCACAGCTCTA 
 

Sequence 3. 
AAGAGAAAGTTTCAAGATCTTCTGTGTGAGGAAAAT
GAATCCACAGCTCTA 
 
(1) For test sequence 1, we set the dynamic programming 
method with error tolerant bases = 0. rs28909981 was 
successfully identified and had 27 SNP flanking marker 
matches. Run time was 2844 millisecond. 
 
(2) For test sequence 2, we set the dynamic programming 
method with an error tolerant bases = 1, because the C allele 
was mismatched with the SNP in fasta sequence. rs28909981 
and rs17883172 were identified and had 36 SNP flanking 
marker matches. Run time was 3313 millisecond. rs17883172 
is similar to rs28909981. The rs17883172 sequence was as 
follows: 
GAGAAAGTTTCAAGATCTTCTGTCTRAGGAAAATGA
ATCCACAGCTCTACC 
The C allele represents SNP rs28909981. We still search 
rs28909981 successfully and discovered SNP rs17883172 in 
this sequence. 
 
(3) For test sequence 3, we set the dynamic programming 
method with error tolerant bass = 1, because the G allele is 
mismatched with the SNP in fasta sequence. The result finds 
rs28909981 successfully and had 34 SNP flanking marker 
matches. Run time was 3141 millisecond. 
 
(4) For test sequence 1, we adjusted the dynamic programming 
method with error tolerant bases = 5. rs28909981 and 
rs17883172 could be found, and 27 SNP flanking marker 
matches were identified. Run time was 2750 millisecond. We 
also discovered that test sequence 2 and sequence 3 with error 
tolerant bases = 5 still find rs28909981 and rs17883172. 
 

The results described above show that the presented 
approach indeed provides exact SNP IDs from sequences. The 
advantages of this approach are effective, stable and exact. It 
seeks through SNP fasta database and only aims at specific 
database. By the property, it reduces the unknown errors and 
performs the more exact output. The proposed approach can be 
used for specialized application of SNP IDs identification. It 
will help biologists to find SNP IDs within input sequences and 
have the chance to find invalidated SNPs. It also is useful in 
SNP association studies. 

IV. CONCLUSION 
SNPs are essential for personalized medicine. In order to 

identify SNP ID within input sequences, this research proposes 
the use of SNP flanking markers and combines Boyer-Moore 
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algorithm with dynamic programming to provide exact SNP 
IDs from sequences. The NCBI dbSNP, SNP fasta and SNP 
flanking sequences of 10 bps for the rat, mouse, and human 
organisms were mainly built, improving on our previously 
proposed methods. After implementation, verified SNP IDs 
could be obtained from sequences in a fast and efficient way. 
This integrated approach constitutes a novel application to 
identify SNP IDs, and can be used for systematic association 
studies. 
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