1. Device a short synthesis of salbutamol from salicylaldehyde. (5%)

2. Account for the acid-catalyzed rearrangement shown below. (5%)

- 3. Give at least one example to explain the following name reactions. (15%)
- a) Baylis-Hillman reaction
- b) Suzuki coupling
- c) Heck reaction

I

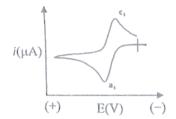
- 1. Explain the following term: (9%) 1)template effect, 2) Z-out, 3) β -elimination
- 2. Predict the structure of the following compounds: $.CIOF_2^+.(2\%)$
- 3. Explain why ${\rm CaF_2}$ is more stable than ${\rm CaF}$ and ${\rm NaCl_2}$ do not exist.(4%)
- 4. Determination the point group of the following compounds: ethane(staggered conformation) and C₃H₄(allene)_. (4%).
- 5. Give the valence electron count for the following species.(3%) $(\eta^5\text{-}\text{C}_5\text{H}_5)(\text{NO})_2\text{Cr}(\text{CONHMe})$
- 6. Compare and explain the order stretching frequency(υ_{CO}) for the following compound: (PPh₃)₃Mo(CO)₃, (PF₃)₃Mo(CO)₃, (P(OPh)₃)₃Mo(CO)₃ (3%)

皿.

Answer the following questions as detailed as you can, please.

Spectroscopy

Please investigate the "Photoacoustic Effect"? How can this effect be employed in UV-Vis and IR spectroscopy and what is the specificity that ordinary UV-Vis and IR spectroscopy cannot achieve? (6%)


2. Please explain why the wave length of a fluorescence emission is always longer than that of the excitation radiation used to trigger the fluorescence emission?" (7%)

Chromatography

Generally, the "Partition Chromatography" can be divided into two different types; "Normal-Phase Chromatography" and "Reversed-Phase Chromatography". Please investigate the differences between them? (Hint: these two categories are distinguished based on a physical property of the mobile phases and stationary phases) (6%)

Electrochemistry

The cyclic voltammogram (CV) of a reversible reaction, $R \leftrightarrow O + ne$, is shown as the plot below where the reaction occurred at a platinum electrode. Because of the negative sign of the electron, an electron has higher potential energy in the electrode if a more negative potential is applied. Thus, which one of the two peaks, a_1 or c_1 , corresponds to the oxidation step; $R \to O + ne$? and please explain why peak-shape curve is always obtained from the cyclic voltammetry when the solution is not stirred? (R: the species in its reduced state, O: the species in its oxidized state, e: electron, n: number of transferred electron) (6%)

亚

a. Define these phrases:

- (i) Clausius statement the 2nd Laws of Thermodynamics: (4 points)
- (ii)Franck-Condon Principle: (4 points)
- b. Proceed by solving Eq. $\left(\frac{PV_m}{RT} = 1 + \frac{B_2}{V_m} + \frac{B_3}{V_m^2} + \frac{B_4}{V_m^3} +$

and substituting this expression for P in Eq. $(PV_m = RT + A_2P + A_3P^2 + A_4P^3 + \cdots)$, A₂, A₃, etc., are called pressure virial coefficients. Then use the fact that the coefficient of any power of $1/V_m$ must be the same on both sides of the equation. Show that A₂=B₂. (6 points)

c. For the gaseous reaction: 2NO + 2H₂ \rightarrow N₂ + 2H₂O

The mechanism has been proposed (1) 2NO + H₂
$$\xrightarrow{k_1}$$
 N₂ + H₂O₂ (2) H₂O₂ + H₂ $\xrightarrow{k_1}$ 2H₂O

Apply the steady-state approximation to this reaction:

Find the rate law if the steady-state approximation is used with inclusion of the reverse of step 1 (4 points)

The work function of nickel equals 5.0 eV. Find (a) the threshold wavelength for nickel and (b) the maximum electron speed for a wavelength of 195 nm. (7 points)

Useful constants:

Planck constant h= $6.626 \times 10^{-34} \text{ J s}$ Boltzmann constant k= $1.381 \times 10^{-23} \text{ J K}^{-3}$ Avogadro constant N_A= $6.022 \times 10^{23} \text{ mol}^{-1}$ eV = $1.6022 \times 10^{-19} \text{ J eV}^{-1}$ Light speed = $2.9979 \times 10^8 \text{ m s}^{-1}$