高雄醫學大學 99 學年度 研究所 招生考試

藥學系博士班

儀器分析

共1頁

- 1. Define: (30%)
 - (a) absorptivity
 - (b) wavenumber
 - (c) fluorescence
 - (d) phosphorescence
 - (e) coupling constants
 - (f) chemical shift
 - (g) base peak in mass spectrometry
 - (h) molecular ion peak in mass spectrometry
 - (i) tandem mass spectrometry
 - (j) retention time
- 2. Describe van Deemter equation. (10%)
- 3. Describe the components of a fluorometer. (10%)
- 4. Describe Beer's Law. (10%)
- 5. What is an internal standard and why is it used? (10%)
- 6. Describe the components of a mass spectrometer. (10%)
- 7. For a normal-phase separation, predict the order of elution of n-hexane, n-hexanol, benzene. (10%)
- 8. Which electronic molecular energy levels are most used for absorption spectrometry? (10%)

藥學系博士班有機化學共 1 頁

- 1. Show the detailed mechanism, using curved arrows, for the dehydration of 1-methylcyclopentanol with phosphoric acid. Show all possible products, indicate which is expected to be the major product, and explain why. (15%)
- 2. Draw structures of compounds $\mathbf{A} \mathbf{E}$, formed by reactions in the sequence resulting in the overall conversion of benzene into naphthalene. (20%)

$$\begin{array}{c} & & & \\ &$$

- 3. Propose structures that are consistent with each set of peaks: (20%)
 - (a) C₈H₁₀, 1.25 ppm (t, 3H), 2.68 ppm (q, 2H), 7.23 ppm (m, 5H);
 - (b) C₇H₈O, 2.43 ppm (s, 1H), 4.58 ppm (s, 2H), 7.28 ppm (m, 5H); IR peak at 3350 cm⁻¹;
 - (c) $C_3H_6O_2$, 1.27 ppm (t, 3H), 2.66 ppm (q, 2H), 10.95 ppm (s, 1H); IR peaks at 1715 cm⁻¹ and 3500 3000 cm⁻¹;
 - (d) $C_5H_{10}O$, 1.10 ppm (d, 6H), 2.10 ppm (s, 3H), 2.50 ppm (m, 1H); IR peak at 1720 cm⁻¹;
 - (e) C₈H₉Br, 2.00 ppm (d, 3H), 5.15 ppm (q, 1H), 7.35 ppm (m, 5H)
- 4. Show the reactions and reagents necessary to accomplish each of the following syntheses. (30%)
 - (a) cyclohexane to cyclohexylacetylene
 - (b) 1-butene to 3-methyl-1-pentyne
 - (c) ethylene to 2-pentyne
 - (d) nitrobenzene to *m*-bromophenol
 - (e) toluene to benzylamine
 - (f) benzene to phenol
 - (g) toluene to *p*-nitrobenzoic acid
 - (h) cyclohexene to trans-1,2-cyclohexanediol
 - (i) ethyl bromide to 1-bromobutane
 - (j) CH₃OCH₂CH₂Br to CH₃O(CH₂)₄OH
- 5. Three compounds, A, B, and C, have the same molecular formula, C₅H₈. All three compounds decolorize Br₂ / CCl₄. Both A and B produce pentane when reacted with excess H₂ / Pt. Under the same conditions, C absorbs one equivalent of H₂.
 (a) Reaction of A with hot KMnO₄ gave CH₃CH₂CH₂COOH, while similar treatment of B produced CH₃CH₂COOH. What are structures of A and B? (10%)
 - (b) Ozonolysis of C produced the dialdehyde, $OHC(CH_2)_3CHO$ as a sole product. What is the structure of C? (5%)