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Abstract. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants κ, η > 0,
V, T : C → C be nonexpansive mappings with Fix(T ) 6= ∅ where Fix(T ) denotes the fixed
point set of T , and f : C → H be a ρ-contraction with coefficient ρ ∈ [0, 1). Let 0 < µ < 2η/κ2

and 0 < γ ≤ τ , where τ = 1 −
√

1− µ(2η − µκ2). For each s, t ∈ (0, 1), let xs,t be a unique

solution of the fixed point equation xs,t = PC [sγf(xs,t) + (I − sµF )(tV + (1 − t)T )xs,t]. We
derive the following conclusions on the behavior of the net {xs,t} along the curve t = t(s):

(i) if t(s) = O(s), as s → 0, then xs,t(s) → z∞ strongly, which is the unique solution of the
variational inequality of finding z∞ ∈ Fix(T ) such that

〈[(µF − γf) + l(I − V )]z∞, x− z∞〉 ≥ 0, ∀x ∈ Fix(T ).
(ii) if t(s)/s → ∞, as s → 0, then xs,t(s) → x∞ strongly, which is the unique solution of

some hierarchical variational inequality problem.

Keywords: Implicit method; General variational inequality; Hierarchical fixed point;
Nonexpansive mapping; Projection; Demiclosedness principle
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this
paper, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x
implies that {xn} converges strongly to x. Let T : C → C be a nonexpansive mapping;
namely, ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. The set of fixed points of T is denoted by the
set Fix(T ) := {x ∈ C : Tx = x}. It is well known that if Fix(T ) 6= ∅ then Fix(T ) is closed
and convex. Given nonexpansive mapping V : C → C, consider the variational inequality (for
short, VI) of finding hierarchically a fixed point x∗ ∈ Fix(T ) of T with respect to V such that

〈(I − V )x∗, y − x∗〉 ≥ 0, ∀y ∈ Fix(T ). (1.1)

Equivalently, x∗ = PFix(T )V x∗; that is, x∗ is a fixed point of the nonexpansive mapping
PFix(T )V , where PK denotes the metric projection from H onto a nonempty closed convex
subset K of H. Let S denote the solution set of the the VI (1.1) and assume throughout
the rest of this paper that S 6= ∅. It is easy to see that S = Fix(PFix(T )V ). The VI (1.1)
covers several topics investigated in the literature; see, e.g., [1,3,5,6,8,11,12]. Related iterative
methods for solving fixed point problems, variational inequalities and optimization problems
can also be found in [14-26].

Let f : C → C be a ρ-contraction and define, for s, t ∈ (0, 1), two mappings Wt and fs,t

by
Wt = tV + (1− t)T and fs,t = sf + (1− s)Wt.

It is easy to verify that Wt is nonexpansive and fs,t is a [1− (1− ρ)s]-contraction.
Let xs,t be the unique fixed point of fs,t, that is, the unique solution of the fixed point

equation
xs,t = sf(xs,t) + (1− s)Wtxs,t. (1.2)

Moudafi and Mainge [7] initiated the investigation of the iterated behavior of the net {xs,t}
as s → 0 firstly and t → 0 secondly. They made the following assumptions:

(A1) for each t ∈ (0, 1), the fixed point set Fix(Wt) of Wt is nonempty and the set

{Fix(Wt) : 0 < t < 1} =
⋃

t∈(0,1)

Fix(Wt)

is bounded;
(A2) ∅ 6= S ⊂ ‖ · ‖ − lim inft→0 Fix(Wt) := {z : ∃zt ∈ Fix(Wt) such that zt → z}.

Moudafi and Mainge [7] (see also [9]) proved that, for each fixed t ∈ (0, 1), as s → 0, xs,t →
xt; moreover, as t → 0, xt ⇀ x∞ which is the unique solution of the variational inequality of
finding x∞ ∈ S such that

〈(I − f)x∞, x− x∞〉 ≥ 0, ∀x ∈ S. (1.3)

The following theorem, due to Xu [10], improves Moudafi and Mainge’s result since it shows
that {xt} actually strongly converges to x∞. Moreover, it does not need the boundedness
assumption of the set

⋃
t∈(0,1) Fix(Wt).
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Theorem 1.1 ([10, Theorem 3.2]). Let the above assumption (A2) hold. Assume also
that, for each t ∈ (0, 1), Fix(Wt) is nonempty (but not necessarily bounded). Then the strong
lims→0 xs,t =: xt exists for each t ∈ (0, 1). Moreover, the strong limt→0 xt =: x∞ exists and
solves the VI (1.3). Hence, for each null sequence {sn} in (0, 1), there is another null sequence
{tn} in (0, 1) such that xsn,tn , as n →∞.

In [7,10], the authors stated the problem of the convergence of {xs,t} when (s, t) → (0, 0)
jointly. Very recently, Cianciaruso, Colao, Muglia and Xu [13] further investigated the behav-
ior of the net {xs,t} along the curve t = t(s) and their results point to a negative answer to
this problem.

Theorem 1.2 ([13, Theorem 2.1]). Let H be a real Hilbert space and let C be a nonempty
closed convex subset of H. Let V, T : C → C be nonexpansive mappings with Fix(T ) 6= ∅.
Let f : C → C be a ρ-contraction with ρ ∈ [0, 1). Assume that ts = O(s), as s → 0, and let
l = lim sups→0(ts/s). Then the net {xs,ts}s∈(0,1) defined by

xs,ts = sf(xs,ts) + (1− s)Wtsxs,ts , (1.4)

strongly converges to z∞ ∈ Fix(T ) which is the unique solution of the variational inequality
of finding z∞ ∈ Fix(T ) such that

〈[(I − f) + l(I − V )]z∞, x− z∞〉 ≥ 0, ∀x ∈ Fix(T ). (1.5)

Theorem 1.3 ([13, Theorem 3.1]). Let H be a real Hilbert space and let C be a nonempty
closed convex subset of H. Assume that V, T : C → C are nonexpansive mappings with
Fix(T ) 6= ∅ and f : C → C is a ρ-contraction with ρ ∈ [0, 1). Assume the condition (A2)
holds. Let ts = t(s) satisfy lims→0 ts/s = ∞. Then the net {xs,ts}s∈(0,1) defined by

xs,ts = sf(xs,ts) + (1− s)Wtsxs,ts ,

strongly converges to x∞ ∈ S which is the unique solution of the VI (1.3).

On the other hand, let F : H → H be a κ-Lipschitzian and η-strongly monotone operator
with constants κ, η > 0, and let T : H → H be nonexpansive such that Fix(T ) 6= ∅. In
2001, Yamada [11] introduced the so-called hybrid steepest-descent method for solving the
variational inequality problem: finding x̃ ∈ Fix(T ) such that

〈Fx̃, x− x̃〉 ≥ 0, ∀x ∈ Fix(T ).

This method generates a sequence {xn} via the following iterative scheme:

xn+1 = Txn − λn+1µF (Txn), ∀n ≥ 0, (1.6)

where 0 < µ < 2η/κ2, the initial guess x0 ∈ H is arbitrary and the sequence {λn} in (0, 1)
satisfies the conditions:

λn → 0,
∞∑

n=0

λn = ∞ and
∞∑

n=0

|λn+1 − λn| < ∞.
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A key fact in Yamada’s argument is that, for small enough λ > 0, the mapping

T λx := Tx− λµF (Tx), ∀x ∈ H

is a contraction, due to the κ-Lipschitz continuity and η-strong monotonicity of F .

In this paper, let C be a nonempty closed convex subset of a real Hilbert space H. As-
sume F : C → H is a κ-Lipschitzian and η-strongly monotone operator with constants
κ, η > 0, f : C → H is a ρ-contraction with coefficient ρ ∈ [0, 1) and T, V : C → C
are nonexpansive mappings with Fix(T ) 6= ∅. Let 0 < µ < 2η/κ2 and 0 < γ ≤ τ , where

τ = 1 −
√

1− µ(2η − µκ2). Consider the hierarchical variational inequality problem (for

short, HVIP):
VI (a): finding z∗ ∈ Fix(T ) such that 〈(I − V )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T );
VI (b): finding x∗ ∈ S such that 〈(µF − γf)x∗, x− x∗〉 ≥ 0, ∀x ∈ S.

Here S denotes the nonempty solution set of the VI (a).

Motivated and inspired by the above hybrid steepest-descent method and hierarchical fixed
point approximation method, we define, for each s, t ∈ (0, 1), two mappings Wt and fs,t by

Wt = tV + (1− t)T and fs,t = PC [sγf + (I − sµF )Wt].

It is easy to see that Wt is a nonexpansive self-mapping on C. Moreover, utilizing Lemma 2.5
in Section 2, we can see that fs,t is a (1− (τ − γρ)s)-contraction. Indeed, observe that

‖fs,t(x)− fs,t(y)‖ = ‖PC [sγf(x) + (I − sµF )Wtx]− PC [sγf(y) + (I − sµF )Wty]‖
≤ ‖[sγf(x) + (I − sµF )Wtx]− [sγf(y) + (I − sµF )Wty]‖
≤ sγ‖f(x)− f(y)‖+ ‖(I − sµF )Wtx− (I − sµF )Wty‖
≤ sγρ‖x− y‖+ (1− sτ)‖x− y‖
= (1− (τ − γρ)s)‖x− y‖.

Let xs,t be the unique fixed point of fs,t in C, that is, the unique solution of the fixed point
equation

xs,t = PC [sγf(xs,t) + (I − sµF )Wt(xs,t)]. (1.7)

We investigate the behavior of the net {xs,t} (generated by (1.7)) along the curve t = t(s)
and our results give a negative answer to the problem put forth in [7,10]. Specifically, we
derive the following conclusions:

(i) if t(s) = O(s), as s → 0, then xs,t(s) → z∞ ∈ Fix(T ), which is the unique solution of
the variational inequality of finding z∞ ∈ Fix(T ) such that

〈[(µF − γf) + l(I − V )]z∞, x− z∞〉 ≥ 0, ∀x ∈ Fix(T ).

(ii) if t(s)/s →∞, as s → 0, then xs,t(s) → x∞ ∈ S, which is the unique solution of the VI
(b).
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In particular, if we put µ = 1, F = I and γ = τ = 1 and let f be a contractive self-mapping
on C with coefficient ρ ∈ [0, 1), then our results reduce to the above Theorems 1.2 and 1.3,
respectively. There is no doubt that our results cover the Theorems 1.2 and 1.3 as special
cases, respectively. In the meantime, our results also extend and improve Xu’s Theorem 3.2
[10].

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall
that the metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x− PCx‖ = inf
y∈C

‖x− y‖ =: d(x, C).

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x ∈ H and z ∈ C.

(i) That z = PCx if and only if there holds the relation:

〈x− z, y − z〉 ≤ 0, ∀y ∈ C.

(ii) That z = PCx if and only if there holds the relation:

‖x− z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, ∀y ∈ C.

(iii) There holds the relation

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

Consequently, PC is nonexpansive and monotone.

Lemma 2.2 (See [2, Demiclosedness principle]). Let C be a nonempty closed convex subset
of a real Hilbert space H and let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. If
{xn} is a sequence in C weakly converging to x and if {(I − T )xn} converges strongly to y,
then (I − T )x = y; in particular, if y = 0, then x ∈ Fix(T ).

The following lemmas are not difficult to prove.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H,
f : C → H a ρ-contraction with coefficient ρ ∈ [0, 1), and F : C → H a κ-Lipschitzian and
η-strongly monotone operator with constants κ, η > 0. Then for 0 ≤ γρ < µη,

〈x− y, (µF − γf)x− (µF − γf)y〉 ≥ (µη − γρ)‖x− y‖2, ∀x, y ∈ C.

That is, µF − γf is strongly monotone with constant µη − γρ.
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Lemma 2.4. There holds the following inequality in a real Hilbert space H:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

The following lemma plays a key role in proving strong convergence of our implicit hybrid
method.

Lemma 2.5 (See [8, Lemma 3.1]). Let λ be a number in (0, 1] and let µ > 0. Let
F : C → H be an operator on C such that, for some constants κ, η > 0, F is κ-Lipschitzian
and η-strongly monotone. Associating with a nonexpansive mapping T : C → C, define the
mapping T λ : C → H by

T λx := Tx− λµF (Tx), ∀x ∈ C.

Then T λ is a contraction provided µ < 2η/κ2, that is,

‖T λx− T λy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1].

Remark 2.1. Put F = I, where I is the identity operator of H. Then κ = η = 1 and
hence µ < 2η/κ2 = 2. Also, put µ = 1. Then it is easy to see that

τ = 1−
√

1− µ(2η − µκ2) = 1.

In particular, whenever λ > 0, we have T λx := Tx− λµF (Tx) = (1− λ)Tx.

3. On Convergence of {xs,t}s,t∈(0,1)

In this section we study the convergence of the net {xs,t} along the curve t = t(s) =: ts,
where ts = O(s), as s → 0.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants κ, η > 0,
V, T : C → C be nonexpansive mappings with Fix(T ) 6= ∅, and f : C → H be a ρ-contraction

with coefficient ρ ∈ [0, 1). Let 0 < µ < 2η/κ2 and 0 < γ ≤ τ , where τ = 1−
√

1− µ(2η − µκ2).

Assume that ts = O(s), as s → 0, and let l = lim sups→0(ts/s). Then the net {xs,ts}s∈(0,1)

defined by
xs,ts = PC [sγf(xs,ts) + (I − sµF )Wtsxs,ts ], (3.1)

where Wts = tsV + (1− ts)T , strongly converges to a fixed point z∞ of T which is the unique
solution of the variational inequality of finding z∞ ∈ Fix(T ) such that

〈[(µF − γf) + l(I − V )]z∞, x− z∞〉 ≥ 0, ∀x ∈ Fix(T ). (3.2)
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Proof. First, let us show that the VI (3.2) has a unique solution. Indeed, it is sufficient
to show that the operator (µF − γf) + l(I − V ) is strongly monotone. Observe that

µη ≥ τ ⇔ µη ≥ 1−
√

1− µ(2η − µκ2)

⇔
√

1− µ(2η − µκ2) ≥ 1− µη

⇔ 1− 2µη + µ2κ2 ≥ 1− 2µη + µ2η2

⇔ κ2 ≥ η2

⇔ κ ≥ η,

and
〈[(µF − γf) + l(I − V )]x− [(µF − γf) + l(I − V )]y, x− y〉
= 〈(µF − γf)x− (µF − γf)y, x− y〉+ l〈(I − V )x− (I − V )y, x− y〉
≥ 〈(µF − γf)x− (µF − γf)y, x− y〉
≥ (µη − γρ)‖x− y‖2, ∀x, y ∈ C.

Since
0 ≤ γρ < γ ≤ τ ≤ µη,

it follows that (µF − γf) + l(I − V ) is strongly monotone with constant µη − γρ > 0. So the
variational inequality (3.2) has only one solution. Below we use z∞ ∈ Fix(T ) to denote the
unique solution of VI (3.2).

The remainder of the proof is divided into two steps.

The first step is to prove that the net {xs,ts}s∈(0,1) is bounded. Indeed, set

ys,ts = sγf(xs,ts) + (I − sµF )Wtsxs,ts ,

where Wts = tsV + (1− ts)T . Take a fixed p ∈ Fix(T ) arbitrarily. Then from (3.1) we obtain
that xs,ts = PCys,ts and

ys,ts − p = sγf(xs,ts) + (I − sµF )Wtsxs,ts − p
= s(γf(xs,ts)− µFWtsp) + (I − sµF )Wtsxs,ts − (I − sµF )Wtsp + Wtsp− p
= sγ(f(xs,ts)− f(p)) + s(γf(p)− µFWtsp) + (I − sµF )Wtsxs,ts − (I − sµF )Wtsp

+ ts(V − I)p.

Since PC is the metric projection from H onto C, utilizing Lemma 2.1, we have

〈PCys,ts − ys,ts , PCys,ts − p〉 ≤ 0.
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Thus utilizing Lemma 2.5 we get

‖xs,ts − p‖2 = 〈PCys,ts − ys,ts , PCys,ts − p〉+ 〈ys,ts − p, xs,ts − p〉
≤ 〈ys,ts − p, xs,ts − p〉
= sγ〈f(xs,ts)− f(p), xs,ts − p〉+ s〈γf(p)− µFWtsp, xs,ts − p〉

+ 〈(I − sµF )Wtsxs,ts − (I − sµF )Wtsp, xs,ts − p〉+ ts〈(V − I)p, xs,ts − p〉
≤ sγ‖f(xs,ts)− f(p)‖‖xs,ts − p‖+ s〈γf(p)− µFWtsp, xs,ts − p〉

+ ‖(I − sµF )Wtsxs,ts − (I − sµF )Wtsp‖‖xs,ts − p‖+ ts〈(V − I)p, xs,ts − p〉
≤ sγρ‖xs,ts − p‖2 + s〈γf(p)− µFWtsp, xs,ts − p〉+ (1− sτ)‖xs,ts − p‖2

+ ts〈(V − I)p, xs,ts − p〉
= (1− s(τ − γρ))‖xs,ts − p‖2 + s〈γf(p)− µFWtsp, xs,ts − p〉

+ ts〈(V − I)p, xs,ts − p〉,

which hence implies that

‖xs,ts − p‖2 ≤ 1

τ − γρ
[〈γf(p)− µFWtsp, xs,ts − p〉+

ts
s
〈(V − I)p, xs,ts − p〉]. (3.3)

In particular,

‖xs,ts − p‖ ≤ 1

τ − γρ
[‖γf(p)− µFWtsp‖+

ts
s
‖(V − I)p‖]. (3.4)

Note
‖Wtsp− p‖ = ts‖(V − I)p‖ ≤ ‖(V − I)p‖. (3.5)

Hence we have
‖Wtsp‖ ≤ ‖p‖+ ‖(V − I)p‖.

Since ts = O(s), as s → 0, (3.4) implies the boundedness of {xs,ts} and the first step is proved.

The second step is to prove that the net xs,ts → z∞ ∈ Fix(T ), as s → 0, where z∞ is the
unique solution of the VI (3.2). Indeed, observe that

‖xs,ts − Txs,ts‖ ≤ sγ‖f(xs,ts)‖+ ‖(I − sµF )Wtsxs,ts − Txs,ts‖
≤ sγ‖f(xs,ts)‖+ sµ‖FWtsxs,ts‖+ ‖Wtsxs,ts − Txs,ts‖
= sγ‖f(xs,ts)‖+ sµ‖FWtsxs,ts‖+ ts‖V xs,ts − Txs,ts‖.

(3.6)

From (3.5) it follows that

‖FWtsxs,ts − Fp‖ = ‖FWtsxs,ts − FWtsp + FWtsp− Fp‖
≤ κ(‖xs,ts − p‖+ ‖Wtsp− p‖)
≤ κ(‖xs,ts − p‖+ ‖(V − I)p‖).

(3.7)

Since {xs,ts} is bounded when s → 0, (3.7) implies the boundedness of {FWtsxs,ts}. Conse-
quently, noticing that {xs,ts} and {FWtsxs,ts} are bounded when s → 0 (hence ts → 0), we
conclude from (3.6) that

‖xs,ts − Txs,ts‖ → 0. (3.8)
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We now claim that {xs,ts}s∈(0,1) is relatively compact as s → 0 in the norm topology. To
see this, assume {sn} is a null sequence in (0, 1). Without loss of generality, we may assume
that xsn,tsn

⇀ x̂ which implies from (3.8) and Lemma 2.2 that x̂ ∈ Fix(T ). It is clear that
FWtsn

x̂ = F (tsnV x̂ + (1− tsn)x̂) → Fx̂ as n →∞. This implies that as n →∞,

|〈γf(x̂)− µFWtsn
x̂, xsn,tsn

− x̂〉|
= |〈γf(x̂)− µF x̂, xsn,tsn

− x̂〉+ 〈µF x̂− µFWtsn
x̂, xsn,tsn

− x̂〉|
≤ |〈γf(x̂)− µF x̂, xsn,tsn

− x̂〉|+ µ‖Fx̂− FWtsn
x̂‖‖xsn,tsn

− x̂‖ → 0.

We thus immediately get from (3.3) that xsn,tsn
→ x̂.

We next further claim that x̂ = z∞, the unique solution of the VI (3.2), which then
completes the proof. Indeed, observe that

(µF − γf)xs,ts =
1

s
(PCys,ts − ys,ts)−

1

s
(I −Wts)xs,ts + µ(Fxs,ts − FWtsxs,ts).

Hence, utilizing Lemma 2.1 we deduce from the monotonicity of µF − γf and I − Wts that
for any fixed p ∈ Fix(T )

〈(µF − γf)p, xs,ts − p〉 ≤ 〈(µF − γf)xs,ts , xs,ts − p〉
= 1

s
〈PCys,ts − ys,ts , PCys,ts − p〉 − 1

s
〈(I −Wts)xs,ts , xs,ts − p〉

+ µ〈Fxs,ts − FWtsxs,ts , xs,ts − p〉
≤ −1

s
〈(I −Wts)xs,ts , xs,ts − p〉+ µ〈Fxs,ts − FWtsxs,ts , xs,ts − p〉

= −1
s
〈(I −Wts)xs,ts − (I −Wts)p, xs,ts − p〉 − 1

s
〈(I −Wts)p, xs,ts − p〉

+ µ〈Fxs,ts − FWtsxs,ts , xs,ts − p〉
≤ −1

s
〈(I −Wts)p, xs,ts − p〉+ µ〈Fxs,ts − FWtsxs,ts , xs,ts − p〉

= ts
s
〈(V − I)p, xs,ts − p〉+ µ〈Fxs,ts − FWtsxs,ts , xs,ts − p〉.

(3.9)

Now since xsn,tsn
→ x̂, we have

Fxsn,tsn
− FWtsn

xsn,tsn
= Fxsn,tsn

− F [tsnV xsn,tsn
+ (1− tsn)Txsn,tsn

] → Fx̂− Fx̂ = 0.

So, putting s = sn and t = tsn in (3.9) and letting n →∞, we immediately conclude that

〈(µF − γf)p, x̂− p〉 ≤ l〈(V − I)p, x̂− p〉, ∀p ∈ Fix(T ).

That is,
〈[(µF − γf) + l(I − V )]p, x̂− p〉 ≤ 0, ∀p ∈ Fix(T ).

Upon replacing the p in the last inequality with x̂ + α(q − x̂) ∈ Fix(T ), where α ∈ (0, 1) and
q ∈ Fix(T ), we get

〈[(µF − γf) + l(I − V )](x̂ + α(q − x̂)), x̂− q〉 ≤ 0.

Letting α → 0, we obtain the VI

〈[(µF − γf) + l(I − V )]x̂, x̂− q〉 ≤ 0, ∀q ∈ Fix(T ).

10



We immediately see that x̂ satisfies the VI (3.2) and therefore we must have x̂ = z∞ since z∞
is the unique solution of (3.2). 2

Remark 3.1. (i) If ts = o(s) (that is, l = 0), then the above argument shows that the
net {xs,ts} actually converges in norm to the unique solution of the variational inequality of
finding x∞ ∈ Fix(T ) such that

〈(µF − γf)x∞, p− x∞〉 ≥ 0, ∀p ∈ Fix(T ), (3.10)

which is also the unique fixed point of the contraction PFix(T )(I−µF +γf), x∞ = PFix(T )(I−
µF + γf)x∞. In particular, if µ = 1, F = I, γ = τ = 1 and f is a ρ-contractive self-mapping
on C, then this is Theorem 3.2 in Xu [10].

(ii) The net {xs,t}s,t∈(0,1) does not converge, in general, as (s, t) → (0, 0) jointly, to the
unique solution x∞ ∈ S of the VI (b) in Section 1. As a matter of fact, if {xs,t}s,t∈(0,1)

converges to x∞ jointly as (s, t) → (0, 0), then (by (3.10) we would have the relation and the
VI (b))

x∞ = PS(I − µF + γf)x∞ = PFix(T )(I − µF + γf)x∞

for all ρ-contraction f . In particular, if µ = 1, F = I and γ = τ = 1, then x∞ = PSf(x∞) =
PFix(T )f(x∞) for all ρ-contraction f . This implies that S = Fix(T ) which is not true, in
general.

(iii) Consider the case of l > 0. If x∞, the unique solution of (3.10), belongs to S, then,
clearly, x∞ = z∞. If x∞ 6∈ S, the following example shows that there are, in general, no links
among z∞, S and x∞. Take

C = [0, 1], µ = 1, F = I, γ = τ = 1, T = I, f(x) =
x

2
, V x = 1− x, l = 1.

Then Fix(T ) = [0, 1]. Moreover, the unique solution x∞ of the variational inequality of finding
x∞ ∈ [0, 1] such that

〈(µF − γf)x∞, z − x∞〉 ≥ 0, ∀z ∈ [0, 1],

(that is, 〈(I − f)x∞, z − x∞〉 ≥ 0, ∀z ∈ [0, 1])

is x∞ = 0; the unique solution z∞ of the variational inequality of finding z∞ ∈ [0, 1] such that

〈[(µF − γf) + l(I − V )]z∞, z − z∞〉 ≥ 0, ∀z ∈ [0, 1],

(that is, 〈[(I − f) + (I − V )]z∞, z − z∞〉 ≥ 0, ∀z ∈ [0, 1])

is z∞ = 2
5
, and the set S of solutions to the variational inequality of finding x ∈ [0, 1] such

that
〈(I − V )x, z − x〉 ≥ 0, ∀z ∈ [0, 1],

is the singleton {1
2
}.

Remark 3.2. Compared with Theorem 2.1 of Cianciaruso, Colao, Muglia and Xu [13],
our Theorem 3.1 improves and extends their Theorem 2.1 [13] in the following aspects:
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(i) The (self) contraction f : C → C in [13, Theorem 2.1] is extended to the case of
(possibly nonself) contraction f : C → H on a nonempty closed convex subset C of H.

(ii) The convex combination of (self) contraction f and nonexpansive mapping Wts in the
implicit scheme (2.1) of Theorem 2.1 [13] is extended to the linear combination of (possibly
nonself) contraction f and hybrid steepest-descent method involving Wts .

(iii) In order to guarantee that the net {xs,ts} generated by the implicit scheme still lies
in C, the implicit scheme (2.1) in [13, Theorem 2.1] is extended to develop our new implicit
scheme (3.1) by virtue of the projection method.

(iv) The new technique of argument is applied to deriving our Theorem 3.1. For instance,
the characteristic properties (Lemma 2.4) of the metric projection play a key role in proving
the strong convergence of the net {xs,ts}s∈(0,1) in our Theorem 3.1.

(v) If we put µ = 1, F = I and γ = τ = 1 and let f be a contractive self-mapping on
C with coefficient ρ ∈ [0, 1), then our Theorem 3.1 reduces to Theorem 2.1 [13]. Thus, our
Theorem 3.1 covers Theorem 2.1 [13] as a special case.

4. The Case of l = ∞

In this section we examine the convergence of the net {xs,ts}s∈(0,1) along the curve where
ts/s →∞, as s → 0. We shall prove that the net converges strongly to a point x∞ ∈ S which
is the unique solution of the VI (b) in Section 1.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Assume that F : C → H is a κ-Lipschitzian and η-strongly monotone operator with constants
κ, η > 0, V, T : C → C are nonexpansive mappings with Fix(T ) 6= ∅, and f : C → H is a
ρ-contraction with coefficient ρ ∈ [0, 1). Assume there holds the condition (A2) in Section 1.

Let 0 < µ < 2η/κ2 and 0 < γ ≤ τ , where τ = 1 −
√

1− µ(2η − µκ2). Let ts = t(s) satisfy

lims→0 ts/s = ∞. Then the net {xs,ts}s∈(0,1) defined by

xs,ts = PC [sγf(xs,ts) + (I − sµF )Wtsxs,ts ], (4.1)

where Wts = tsV + (1 − ts)T , strongly converges to x∞ ∈ S which is the unique solution of
the VI (b).

Proof. The proof is divided into three steps, the first of which is to prove the boundedness
of {xs,ts}s∈(0,1). Indeed, let z ∈ S. By condition (A2) there exists ps ∈ Fix(Ws) such that
ps → z as s → 0. Now, set

ys,ts = sγf(xs,ts) + (I − sµF )Wtsxs,ts ,

where Wts = tsV + (1− ts)T . Then from (4.1) we obtain that xs,ts = PCys,ts and

ys,ts − pts = sγf(xs,ts) + (I − sµF )Wtsxs,ts − pts

= sγ(f(xs,ts)− f(pts)) + s(γf − µF )pts + (I − sµF )Wtsxs,ts − (I − sµF )Wtspts .
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Since PC is the metric projection from H onto C, utilizing Lemma 2.1, we have

〈PCys,ts − ys,ts , PCys,ts − pts〉 ≤ 0.

Thus utilizing Lemma 2.5 we get

‖xs,ts − pts‖2 = 〈PCys,ts − ys,ts , PCys,ts − pts〉+ 〈ys,ts − pts , xs,ts − pts〉
≤ 〈ys,ts − pts , xs,ts − pts〉
= sγ〈f(xs,ts)− f(pts), xs,ts − pts〉+ s〈(γf − µF )pts , xs,ts − pts〉

+ 〈(I − sµF )Wtsxs,ts − (I − sµF )Wtspts , xs,ts − pts〉
≤ sγ‖f(xs,ts)− f(pts)‖‖xs,ts − pts‖+ s〈(γf − µF )pts , xs,ts − pts〉

+ ‖(I − sµF )Wtsxs,ts − (I − sµF )Wtspts‖‖xs,ts − pts‖
≤ sγρ‖xs,ts − pts‖2 + s〈(γf − µF )pts , xs,ts − pts〉+ (1− sτ)‖xs,ts − pts‖2

= (1− s(τ − γρ))‖xs,ts − pts‖2 + s〈(γf − µF )pts , xs,ts − pts〉,

It follows that

‖xs,ts − pts‖2 ≤ 1

τ − γρ
〈(γf − µF )pts , xs,ts − pts〉. (4.2)

This implies immediately that

‖xs,ts − pts‖ ≤
1

τ − γρ
‖(γf − µF )pts‖. (4.3)

From (4.3) the boundedness of {xs,ts}s∈(0,1) follows since {ps} is bounded.

The second step is to prove that the set of weak cluster points of {xs,ts}s∈(0,1), ωw(xs,ts), is
a subset of S; moreover, ωw(xs,ts) = ωS(xs,ts). First observe that the boundedness of {xs,ts},
(3.8), and Lemma 2.2 imply that ωw(xs,ts) ⊂ Fix(T ).

Now let w ∈ ωw(xs,ts) and assume that xn := xsn,tsn
⇀ w, where sn → 0. For convenience,

we write tn = tsn for all n; thus, tn/sn → ∞ as n → ∞. Now, take a fixed x̂ ∈ Fix(T )
arbitrarily and set

yn = snγf(xn) + (I − snµF )Wtnxn,

where Wtn = tnV + (1− tn)T . Then from (4.1) we obtain that xn = PCyn and

yn − x̂ = snγ(f(xn)− f(x̂)) + s(γf(x̂)− µFWtnx̂) + (I − snµF )Wtnxn − (I − snµF )Wtnx̂
+ tn(V − I)x̂.

Since PC is the metric projection from H onto C, utilizing Lemma 2.1, we have

〈PCyn − yn, PCyn − x̂〉 ≤ 0.
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Thus utilizing Lemma 2.5 we obtain that for a constant M ≥ supn{‖(γf−µFWtn)x̂‖‖xn−x̂‖},

‖xn − x̂‖2 = 〈PCyn − yn, PCyn − x̂〉+ 〈yn − x̂, xn − x̂〉
≤ 〈yn − x̂, xn − x̂〉
= snγ〈f(xn)− f(x̂), xn − x̂〉+ sn〈(γf − µFWtn)x̂, xn − x̂〉

+ 〈(I − snµF )Wtnxn − (I − snµF )Wtnx̂, xn − x̂〉+ tn〈(V − I)x̂, xn − x̂〉
≤ snγ‖f(xn)− f(x̂)‖‖xn − x̂‖+ sn‖(γf − µFWtn)x̂‖‖xn − x̂‖

+ ‖(I − snµF )Wtnxn − (I − snµF )Wtnx̂‖‖xn − x̂‖+ tn〈(V − I)x̂, xn − x̂〉
≤ snγρ‖xn − x̂‖2 + snM + (1− snτ)‖xn − x̂‖2 + tn〈(V − I)x̂, xn − x̂〉
= (1− sn(τ − γρ))‖xn − x̂‖2 + tn〈(V − I)x̂, xn − x̂〉+ snM.

It follows that

〈(I − V )x̂, xn − x̂〉 ≤ snM

tn
→ 0

as sn/tn → 0. But xn ⇀ w, and we derive

〈(I − V )x̂, w − x̂〉 ≤ 0, ∀x̂ ∈ Fix(T ). (4.4)

Upon replacing the x̂ in (4.4) with w + α(x̃− w) ∈ Fix(T ), where α ∈ (0, 1) and x̃ ∈ Fix(T ),
we get

〈(I − V )(w + α(x̃− w)), w − x̃〉 ≤ 0.

Letting α → 0, we obtain the VI

〈(I − V )w, w − x̃〉 ≤ 0 ∀x̃ ∈ Fix(T ).

Therefore, w ∈ S.
Next using condition (A2) again, we have a sequence ptn ∈ Fix(Wtn) such that ptn → w.

Then in relation (4.2) we replace z and pts with w and ptn , respectively, to derive

‖xn − ptn‖2 ≤ 1

τ − γρ
〈(γf − µF )ptn , xn − ptn〉. (4.5)

Now since (γf − µF )ptn → (γf − µF )w and xn − ptn ⇀ 0, taking the limit in (4.5), we
immediately get xn → w. Hence w ∈ ωS(xs,ts).

The third and final step is to prove that the net {xs,ts} converges in norm to x∞ =
PS(I−µf +γf)x∞. It suffices to prove that each norm limit point w ∈ ωS(xs,ts) solves the VI
(b) in Section 1. We still use the same subsequence {xn} of the net {xs,ts} such that xn → w
as shown in the second step. On the other hand, for every p̄ ∈ S, by condition (A2), we have,
for each n, p̄tn ∈ Fix(Wtn) such that p̄tn → p̄ as n →∞. Observe that

(µF − γf)xn =
1

sn

(PCyn − yn)− 1

sn

(I −Wtn)xn + µ(Fxn − FWtnxn),
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where yn = snγf(xn) + (I − snµF )Wtnxn and xn = PCyn. Utilizing Lemmas 2.1 and 2.5 we
deduce from the monotonicity of I −Wtn that

〈(µF − γf)xn, xn − p̄tn〉
= 1

sn
〈PCyn − yn, PCyn − p̄tn〉 − 1

sn
〈(I −Wtn)xn, xn − p̄tn〉+ µ〈Fxn − FWtnxn, xn − p̄tn〉

= 1
sn
〈PCyn − yn, PCyn − p̄tn〉 − 1

sn
〈(I −Wtn)xn − (I −Wtn)p̄tn , xn − p̄tn〉

+ µ〈Fxn − FWtnxn, xn − p̄tn〉
≤ µ〈Fxn − FWtnxn, xn − p̄tn〉.

Note that Fxn − FWtnxn = Fxn − F [tnV xn + (1 − tn)Txn] → Fw − Fw = 0 as n → ∞.
Passing to the limit as n →∞ in the last inequality, we conclude that

〈(µF − γf)w, w − p̄〉 ≤ 0, ∀p̄ ∈ S.

This implies that w satisfies the VI (b) in Section 1. Hence w = x∞, as required. 2

Remark 4.1. Compared with Theorem 3.1 of Cianciaruso, Colao, Muglia and Xu [13],
our Theorem 4.1 improves and extends their Theorem 3.1 [13] in the following aspects:

(i) The (self) contraction f : C → C in [13, Theorem 3.1] is extended to the case of
(possibly nonself) contraction f : C → H on a nonempty closed convex subset C of H.

(ii) The convex combination of (self) contraction f and nonexpansive mapping Wts in the
implicit scheme (3.1) of Theorem 3.1 [13] is extended to the linear combination of (possibly
nonself) contraction f and hybrid steepest-descent method involving Wts .

(iii) In order to guarantee that the net {xs,ts} generated by the implicit scheme still lies
in C, the implicit scheme (3.1) in [13, Theorem 3.1] is extended to develop our new implicit
scheme (4.1) by virtue of the projection method.

(iv) The new technique of argument is applied to deriving our Theorem 4.1. For instance,
the characteristic properties (Lemma 2.4) of the metric projection play a key role in proving
the strong convergence of the net {xs,ts}s∈(0,1) in our Theorem 4.1.

(v) If we put µ = 1, F = I and γ = τ = 1 and let f be a contractive self-mapping on
C with coefficient ρ ∈ [0, 1), then our Theorem 4.1 reduces to Theorem 3.1 [13]. Thus, our
Theorem 4.1 covers Theorem 3.1 [13] as a special case.
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