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1 Introduction

Let X be a real normed linear space and C' be a closed, bounded, convex subset of X having
the origin as an interior point. Recall that the Minkowski function pc with respect to the set
C is defined by

po(z) =inf{t >0:2 € tC}, Vo e X. (1.1)

Let G be a subset of X and = € X. Following [2], define the minimal time function 7¢(+; G)
by
To(x; G) = inf pc(g —z), Vo € X. (1.2)
geG

The study of the minimal time function 7¢(+; G) is motivated by its worldwide applications in
many areas of variational analysis, optimization, control theory, approximation theory, etc.,
and has received a lot of attention; see e.g., [2,6,7,9,11-13,17,18]. In particular, the proximal
subgradient of the minimal time function 7¢(+; G) is estimated and computed in [7,17,18],
for Hilbert spaces with applications to control theory; while other various subgradients such
as the Fréchet subgradients, Clark subgradients, the e-subdifferential as well as the limiting
subdifferential of the minimal time function 7¢(+; G) in Hilbert spaces and/or general Banach
spaces are explored in [6,9,13].

Our interest in the present paper is focused on the following minimization problem, de-
noted by min(z, G),

i — 1.3
min pc(g — ), (1.3)

where x € X. Clearly, go € G is a solution of the problem min(z,G) if and only if

pc(go — ) = 70(7; G).

According to [2], any solution of the problem min(z, ) is called a best T¢-approximation
(or, generalized best approximation) to z from G. We denote by P&(z) the set of all best
To-approximations to z from G. The generic well-posedness of the minimization problem
min(z, G) in terms of the Baire category was studied in [2,11], while the relationships between
the existence of solutions and directional derivatives of the function 7¢(z;G) was explored
in [12].

In the special case when C is the closed unit ball B of X, the minimal time function (1.2)
and the corresponding minimization problem (1.3) are reduced to the distance function of C
and to the classical best approximation, respectively, which has been studied extensively and
deeply, see, e.g., [3,16,21].

One aim of the present paper is to characterize the class of subsets of X for which the
so-called T7¢-Kolmogorov condition holds about best 7¢-approximations. Another aim of the
present paper is to prove the equivalence between the smoothness of the underlying set C
and the convexity of 7¢-B-suns. In particular, by taking C to be the closed unit ball of
X, our results extend the corresponding ones for nonlinear approximation problems; see,
e.g., [3,5,21].



X. F. Luo, C. Li and J. C. Yao 3

2 Preliminaries

Let X be a real normed linear space and let X™* denote its topological dual. Let A be a
nonempty subset of X. As usual, we use bdA and intA to denote respectively the boundary
and the interior of A. The polar of A is denoted by A° and defined by

A ={z" e X" :2"(x) <1, Vo e A}

Then A° is a weakly*-closed convex subset of X*. Furthermore, in the case when A is a
convex bounded set with 0 € int A, A° is weakly*-compact with 0 € int A°. In particular,
B° equals the closed unit ball of X*. Moreover, for a set A C X*, extA and A" stand for the
set of all extreme points and the weak*-closure of A, respectively. The following proposition
is exactly the well-known Krein-Milman Theorem, see, e.g., [10].

Proposition 2.1. Suppose that A is a compact convex subset of X*. Then A equals the
closed conver closure of extA.

Let

p= inf po(xz) and v = sup pc(z).
lzll=1 |z)|=1

We end this section with some known and useful properties of the Minkowski function; see [15,
Section 1] for assertions (i)-(v) while (vi) is an immediate consequence of (iii) and (v).
Proposition 2.2. Let x,y € X and x* € X*. Then we have the following assertions.

(i) pc(z) >0, and po(x) =0 <=z =0.
+) <pc( )+ pe(y)-

) = Apc(z) for each A > 0.

)<l<=zxzeC.

(
(ii) po(
(iii) po(
(iv) pc(z
(V) po(z) = sup,ecco 2*(2) and pee (z*) = sup,ec 2*(2).
(vi) pllz]l < polz) < vz

z
AT

3 Characterization of the best 7c-approximation

The notion of suns introduced by Efimov and Stechkin (cf. [8]) has proved to be rather
important in nonlinear approximation theory; see, e.g., [3-5,8,21] and references therein. In
the following definition we extend this notion to the case of the generalized approximation.
Throughout the whole paper, we always assume that G C X is a nonempty subset of X, and
let € X and gg € G, unless specially stated.

Definition 3.1. The element gg is called

(a) a 7c-solar point of G with respect to x if go € P&(x) implies that gy € PE(zy) for
each X\ > 0, where x\ = go + ANz — go);

(b) a 1¢-solar point of G if go is a T¢-solar point of G with respect to each x € X.

We say that G is a To-sun of X if each point of G is a To-solar point of G.
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Remark 3.1. We always write
xx=go+ Az —g0), YA>0 (3.1)
if no confusion caused. Thus
pc(go — xx) = Apc(go — x), VYA > 0. (3.2)
Furthermore, the following implication holds (cf. [13, Lemma 3.1]:
go € P&(z) = go € P&(x), YA € [0,1]. (3.3)

For two points z,y € X, we use [z,y] to denote the closed interval with ends z and v,
that is,

2,y = {te+ (1 —t)y: te [0, 1]},
Recall (cf. [1]) that g9 € G is a star-shaped point of G if [go,g] C G for each g € G. If
G has a star-shaped point gg, then G is called a star-shaped set with vertex gg. Clearly, a

convex subset is a star-shaped set with each vertex gy € G. We use S(go, G) to denote the
star-shaped set with vertex gg generated by G, that is,

S(90,G) == | [90, 9)-

geG

Proposition 3.1. Suppose that go € G is a star-shaped point of G. Then gg is a Tc-solar
point of G. Consequently, any convexr subset of X is a To-sun of X.

Proof. Let z € X be such that go € P&(x). By Remark 3.1, we only need to show that
go € Pg(x,\) for each A > 1. To this end, let A > 1 and g € G. Since gy is a star-shaped point
of G, it follows from Proposition 2.2(iii) that

pc(g0 — ) < pe (((1 - /1\> g0 + ig) - fv) = %pc(g — ).

pc(go — xx) = Apc(go — ) < polg — xy).

By (3.2),

Hence, gg € Pg(:v,\). This shows that gg is a T¢-solar point of G. O

The following proposition gives an equivalent condition for 7¢-solar points in terms of
star-shaped points.

Proposition 3.2. The element gg is a To-solar point of G if and only if
go € PS(z) <= go € Pso(gmg)(x), VarelX.

Proof. For x € X, it is clear that g € Pg(go ) () = go € P&(x). Thus, to complete the
proof, it suffices to verify that gg is a 7¢-solar point of G if and only if

90 € PG(x) = g0 € P{(,, (@) (3.4)
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holds for each x € X. To this end, let x € X. By Definition 3.1 and Remark 3.1, one has
that gg is a To-solar point of G if and only if the following implication holds:

go € PS(z) = g0 € Pg(xﬁ), VY Aelo,1). (3.5)
Note by Proposition 2.2(iii) that
90 €PG(z L), ¥ AE[0,1)
< pc(go— ) <pc((Ago+ (1= A)g) —x), Vg € G, VA€ 0,1)
= g0 € PG, o @)

Hence, (3.5) holds if and only if (3.4) holds. This completes the proof. O

Definition 3.2. The element gg is called a local best T¢-approximation to x from G if there

exists an open neighborhood U(goy) of go such that gy € PgmU(go)(‘T)‘

Clearly, if gg € Pg(aﬁ), then g is a local best 7o-approximation to x from G. The following
proposition shows that the converse remains true if gy is a 7o-solar point of G.

Proposition 3.3. Suppose that gy is a To-solar point of G. Then gy € Pg(m) if and only if
go s a local best To-approzimation to x from G.

Proof. The necessity part is clear as noted earlier. Below we prove the sufficiency part. To
this end, suppose that gg is a local best 7¢-approximation to x from G. Then there exists
an open neighborhood U(gg) of go such that go € Pg(go)ﬂG(x)‘ We claim that there is A > 0
such that go € PS(zy). Indeed, otherwise, one has that go ¢ Pg(xl/n) for each n € N. Thus
there exists a sequence {g,} C G such that, for each n € N,

1
pc(gn — 21/m) <pc(go — 1m) = 5?0(90 — ). (3.6)

It follows from Proposition 2.2(vi) that lim,,—,~ gn = go. This implies that there exists ng € N
such that g,, € U(go) N G. This together with (3.6) implies that gy ¢ Pg(go)ﬂG’(xl/nO)’ which
is a contradiction by Remark 3.1 as gy € PS(QO)OG(:U). Hence the claim stands; that is
go € Pg(m\) for some A > 0. Noting that z = gy + %(:m — go) and that go is a T¢-solar point

of GG, we have that
90 € PG (90 + %(m - go)) = PG (x)
and completes the proof. O
For the sequel study, we need to introduce the following notation:
Ego—a = {2" € C° 1 2%(go — z) = pc(go — )}

Then X,4,_, is a nonempty, weakly*-compact convex subset of C°. Furthermore, write
Ego—a 1= extLg,_p. Then, &, # 0 by Proposition 2.1. Moreover, by definition, we have
that

Ego—z = extC° N Xy 4. (3.7)

The notions stated in Definition 3.3 below are extension of the notions of Kolmogorov
Condition and Papini Condition in approximation theory to the setting of the best 7¢-
approximation theory, see, e.g., [4,5,21] and [14].
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Definition 3.3. The pair (x,go) is said to satisfy
(a) the T-Kolmogorov condition (the 1c-KC, for short) if

max x*(g—go) >0, VgeGaG, (3.8)

T*€Xgy—w
(b) the Tc-Papini condition (the 7¢-PC, for short) if

max x*(go—g) <0, Vgeaq. (3.9)
T*EXg o

Clearly, by (3.7), £g,—z in (3.8) and ¥,_, in (3.9) can be replaced by £g,—, and &;_,
respectively.

In the case when C' is the closed unit ball of X, that is, pc is the norm, the notions of the
regular point and the strongly regular point were introduced and studied respectively in [5]
and [21]. The following notions of the To-regular point and the strongly 7o-regular point are
respectively generalizations of the corresponding regular point and strongly regular point in
best approximation theory.

Definition 3.4. The element gg is called
(a) a mo-regular point of G with respect to x if for any weakly*-closed subset A of C°
satisfying for some g € G the condition

Ego—z CTAC extC°*  and IEIéI}‘ (g0 — g) > 0, (3.10)
there exists a sequence {gn,} C G such that g, — go and
x*(go — gn) > 2" (go — ) —pc(go —x), V"€ A VneN; (3.11)

(b) a strongly Tc-regular point of G with respect to x if for any weakly*-closed subset A
of C° satisfying (3.10) for some g € G, there exists a sequence {g,} € G such that g, — go
and

z*(go—gn) >0, Va*eA VnelN (3.12)

We say that G is a Tc-reqular set (resp. strongly To-reqular set) of X if each point of G
is a To-reqular point (resp. strongly Tc-reqular point) of G with respect to each x € X.

Roughly speaking, a 7o-regular point gg of G with respect to x means that, for any
weakly*-closed neighbourhood A of the extreme set £ _,, if there exists some g € G such
that go — g is positive on A, then any neighbourdhood of gy contains an element ¢’ € G such
that go — ¢’ has the same sign as go — g on the set £;,—, while out of this set it can have
opposite sign but have to be controlled within pc(go — ) — 2*(go — x); while, for a strongly
Te-regular point gg, go — ¢’ must have the same sign as gy — g on the whole weakly*-closed
neighbourhood A.

Remark 3.2. Clearly, the strong Tc-reqularity implies the To-reqularity. We don’t know
wether the converse is true even in the case when C is the closed unit ball of X.

Remark 3.3. Clearly, any interior point of G is a strongly To-regular point of G. Moreover,
it is not difficult to check that any star-shaped point of G is a strongly Tc-regular point of G.
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Below we provide an example to illustrate the notions.

Example 3.1. Let X := R? be the 2-dimensional Euclidean space. Let C be the equilateral

triangle with the vertezes (0,2), (v/3,—1) and (—/3,—1) (see Figure 1). Then 0 € intC' and

C*° is the equilateral triangle with vertezes x7, x5, x5, where x7 1= (@, %) , x5 = (0,—1) and

T3 = <—§, %), and so extC® = {z7, 25, x5} (see Figure 2). Let G be the subset defined by

1 1
=< (T1,t2): T2 > =t1, t1 < t1,t0) 1 to > —=t1, t1 >
G {(1,2) 2 2 5t 1_0}U{(1,2) 2 2 —5t, 1_0}

(see Figure 3). Clearly, G is not convexr. We shall show that G is a strongly Tc-regular
set. To this end, let g9 € G. By Remark 3.3, we assume, without loss of generality, that
go = (a1,a2) € bdG satisfies that

1
a1 >0 and a9 = —5a1 (3.13)

(noting that the origin is a star-shaped point of G). Let A be a weakly*-closed subset of C°
satisfying (3.10) for some g = (b1,b2) € G and some x € X. In the case when by > 0 and
by > —%bl, choose g, = (1 — %)go + %g € G for each n € N. Then it is easy to see that {gn}
1s as desired. Below we consider the case when by < 0 and by > %bl. It follows from (3.13)
that

1 1
(CL2 — b2) — 5(@1 — bl) = —a1 + §b1 —by < —a; <O0.

Consequently,
V3

r3(90 — 9) = —7(a1 —by) + %(02 —by) < —\f(al —by) + i(al —b) = %(1 —2v/3)a; < 0.

This means that x5 ¢ A. Therefore, it suffices to consider the case when A = {z},z5}. To
this end, let g, = (1 — %) go for each n € N. Then {g,} C G and g, — go. Noting that

xi(g90) = <§ — i) ap and x5(go) = %al, we have that

1 1
in x*(go — = — min z* =—a; >0, Vnel
(90— gn) = 7 min o) = 5o >0, n

This means that go is a strongly reqular point of G, and so G s a strongly To-reqular set.

&
i

(02) 22 22 G

> t
1y

+/3-1) /3,-1) (0,-1) ty= %fl ty= ’%tl

A\

. Figure 3
Figure 2
Figure 1
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Theorem 3.1. Consider the following assertion:
(1) The pair (z,go) satisfies the Tc-KC.
(if) The point gy € PS(z).
(iii) The pair (x, go) satisfies the T¢-PC.
Then (i)=(ii)=(iii). In addition, if go is a strongly Tc-regular point of G with respect to
x, then (i)<=(ii)<=(iii).
Proof. (i)==(ii). Suppose that (i) holds and let g € G. Then by Definition 3.3 (a) , there

exists 2* € ¥4, such that 2*(g — go) > 0. This together with Proposition 2.2 (v) implies
that

pclgo —x) =" (g0 — g) + 2" (g —x) < 27(g — x) < polg — 2);
hence, gy € P&(z) as g € G is arbitrary and (ii) is proved.
(ii)==(iii). Suppose that (ii) holds. Let ¢ € G and z* € ¥,_,. Then z*(g — z) =
pc(g — x); hence

*(g0 —g) = 2" (g0 — ) + 2" (x — g) < pc(go — ) —pc(g — ) < 0.

This shows that (z, go) satisfies the 7c-PC and (iii) is proved.

Suppose that gg is a strongly 7¢-regular point of G with respect to x. It suffices to prove
the implication (iii)==-(i). To this end, suppose on the contrary that (z, go) does not satisfy
the 7o-KC. Then there exist g € G and ¢ > 0 such that

max z*(g — go) = —0. (3.14)
I*ezgofz
Let 5
U={z"ecextC :2*(g— go) < —5} and A=T". (3.15)

Then A is a weakly*-closed subset of C° satisfying £g,— € A C extC®" and

0
in z*(go — g) > = > 0. 3.16
min *(g90 — 9) 2 5 (3.16)
Since gp is a strongly 7¢-regular point of G with respect to z, there exists a sequence {g,} C G
such that

lim g, = go (3.17)
n—oo

and

rgégx*(go —gn) >0, VneN. (3.18)

Let K = extC°" \ U. Then K is the weakly*-compact subset of extC°". Moreover, we have
that K NX,_; = 0 because £;,—, C U by (3.14) and (3.15). Consequently,

a = max 2" (g0 — z) < pc(go — ). (3.19)
z*eK
Set ]
ap = 5 (pc(go — ) — a). (3.20)

2
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As limy, 00 gn = go by (3.17), one has from Proposition 2.2 (vi) that there exists ng € N
such that
max{pc(gn, — 90), Pc (9o — gno)} < 0. (3.21)
Thus
pc(go — =) < pc(go = Gny) +pc(gny — ) < o + pc(gny — ). (3.22)
It follows from Proposition 2.2 (v), (3.19)-(3.22) that

max T (gny — ) < max " (gno — 90) + max z*(go — )
< pc(gne — 90) + @
< qyp+«o

pc(go — x) — ap
< Pc(gno - J})

This shows that K N &g, —z = 0, and so & no—7 & extC°” \ K = U. Therefore,

o dBOX 7(90 = gno) = Inf 27(g0 = gno) = min 27(go — gn) > 0
thanks to (3.18). Thus, maxg«es,, *(g0 — gny) > 0 by (3.7). This contradicts the 7¢-PC
for the pair (z, go), and the proof is complete. O

Remark 3.4. One natural and interesting question is: Wether the implication (iii)=-(i)
remains true under simple (not strong) reqularity assumption? FEven in the case when C' is
the unit closed ball, we don’t know the answer and so we leave it open.

The main result of this section is a generalization of [4, Theorem 9.

Theorem 3.2. The following assertions are equivalent.
(1) The element gg is a Tc-solar point of G with respect to x.
(ii) The element gy € Pg(x) if and only if (x,go) satisfies the 1c-KC.

(iii) The element gy is a To-regular point of G with respect to x.

Proof. (i)=>(ii). Suppose that (i) holds. The sufficiency part of (ii) follows directly from
Theorem 3.1. Below we show the necessity part of (ii). To this end, we assume that gy €
Pg(x) Without loss of generality, we may assume that = # gg and pc(go — =) # 0. Let
g € G\ {go} be arbitrary. Then gy € P[Cgo,g} (x) by Proposition 3.2 and [go, g] Nint(C +z) = 0.
Thus, by the separation theorem (cf. [10]), there exist y* € X*\ {0} and a real number r
such that

y'(z—x)>r, Vz€lgo,y] (3.23)

and
yv'(y—xz)<r, Vyel+uzx. (3.24)
In particular, we have that pce(y*) < r by Proposition 2.2(v). Let z* = r~!y*. Then
pee(2*) < 1 and so z* € C°. Since gy € [go, 9] N (C + ), it follows from (3.23) and (3.24)
that
r=y"(go — ). (3.25)
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This implies that 2*(go—x) = 1 = pc(go—x), and so 2* € ¥4,_,. Furthermore, 2*(g—go) > 0
thanks to (3.23) and (3.25). Hence the necessity part holds as g € G\ {go} is arbitrary and
the implication is proved.
(ii)==(i). Suppose that (ii) holds and assume that gy € P%(x). Then
max z'(g—go) >0, VgeG. (3.26)
T*€Xgy—a
Let A > 0 be arbitrary. Noting that go — zx = A(go — =), one has that ¥ _,, = Xy .
This together with (3.26) implies that (zy, go) satisfies the 7¢-KC, and so gy € P&(z,). This
shows that gg is a 7¢-solar point of G with respect to x.
(ii)==(iii). Suppose that (ii) holds. Let g € G and A be a weakly*-closed subset of C°
satisfying (3.10). Then
LY < LY )
0 (9= 90) < max (g — go) <0
This together with (3.7) implies that (x, gg) does not satisfy the 7-KC; hence, gy ¢ Pg(x)
by (ii). Since go is a T¢-solar point of G with respect to x by the equivalence of (i) and (ii)
just proved, it follows from Proposition 3.3 that gg is not local best 7¢-approximation to x
from G. Thus there exists a sequence {g,} C G such that g, — go and

pc(gn — ) <pclgo—z), VneN (3.27)

Let 2* € A be arbitrary. Then, 2*(g, — 2) < pc(gn — x) for each n € N. This and (3.27)
imply that

(g0 — gn) > (90 — ) — pc(gn — ) > 2"(g90 — ) —pc(go —x), VneN

In view of Definition 3.4, gg is a 7¢-regular point of G.

(iii)==(ii). Suppose that (iii) holds. By Theorem 3.1 (i), it suffices to prove that (x, go)
satisfies the 7¢-KC whenever gy € Pg(x) To this end, we assume on the contrary that it
is not the case. Then, there are g € G and § > 0 such that (3.14) holds. Let U and A be
defined by (3.15). Then (3.16) holds. Since gg is a T¢-regular point of G with respect to z,
there exists a sequence {g,} C G such that lim, o g = go and (3.11) holds. This together
with Proposition 2.2 implies that

n}gﬁx*(gn —z) <pclgo—x), VneN. (3.28)

On the other hand, let K = extC°" \ U. Then there is € > 0 such that

max =" (go — x) < pc(go — ) — €. (3.29)
r*eK

Since lim;, 00 gn = go, one has that lim, oo pc(gn — go) = 0. Let ng € N be such that
pc(gne — 9o) < €. It follows from (3.29) that

max " (gny — ) < pc(gne — 9o0) + max po(go — ) < polgo — ). (3.30)
rreK r*eK

Combining (3.28) and (3.30), we obtain that pc(gn, — ) < pc(go — ), which contradicts
that gg € Pg(:c) The proof is complete. O
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The following corollary is a global version of Theorem 3.2.

Corollary 3.1. The following statements are equivalent.
(i) G is a 7¢-sun of X.
(if) For each go € G and each v € X, gy € P& (z) if and only if (z,go) satisfies the 7c-KC.

(iii) G is a T¢-regular set.

4 Smoothness and convexity of 70-B-suns

We begin with the notion of smooth convex sets (cf. [10]). Let € bdC and z* € C°. Recall
that z* is a supporting functional of C' at x if z*(x) = 1.

Definition 4.1. The set C is called smooth if each point of bdC has a unique supporting
functional.

The following notion extends a similar concept introduced in [3].

Definition 4.2. The set G is called a To-B-sun of X if for each x € X there exists gy € Pg(,I)
such that go is a Tc-solar point of G with respect to x.

Remark 4.1. Clearly, if G is a ezistence set (i.e., PS(x) # 0 for each x € X ), then a tc-sun
must be To-B-sun. The converse is not true in general, see [21, Example 1.4] for the case
when C' is the unit ball of X.

The main result of this section is as follows, which extends [3, Theorem 2.5] to the setting
of the best To-approximation.

Theorem 4.1. The set C' is smooth if and only if each To-B-sun of X is convez.

Proof. “=". Suppose that C is smooth and G is a 7¢-B-sun of X. It suffices to verify
that %(gl + g2) € G for each pair of elements ¢1,92 € G. To this end, let g1,92 € G and let
T = %(gl + g2). By Definition 4.2 there exists gy € Pg(x) such that gg is a 7¢-solar point of
G with respect to x. It follows from Theorem 3.2 that there exist x7, 25 € X 4 _, such that

z;(9i —go) 20, Vi=12. (4.1)

Suppose that gy # x and consider the point y := (go — x)/pc(go — ). Then y € C and
zf(y) = 1 for each ¢ = 1,2. Noting that each 2} € C°, we have that z}, ¢ = 1,2, are
supporting functionals of C° at y. Hence, 27 = 5 by the smoothness of C. Let z* = z7.

Then

pc(go—x) == (go—x):§x (go—gl)+5x (g0 —g2) <0

thanks to (4.1). By Proposition 2.2 (i), one has = go, which is a contradiction, and hence

%(91 +92) €G.
“«<=". Conversely, suppose on the contrary that C is not smooth. Then there exist
xo € bdC' and two functional z7, 25 € C° such that

x1 #Z x5 and  z](xo) = x5(xg) = 1. (4.2)
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Let G; := {x € X : z}(x) > 0} for each i = 1,2, and let G = G; U G3. Then G is a closed
and nonconvex subset of X. In fact, the closedness is clear. To prove the nonconvexity, we
first prove that ker(z7) \ G2 # 0, where ker(z*) := {x € X : 2*(x) = 0} is the kernel of the
functional z*. Indeed, otherwise, one has that ker(z}) C Ga. Let x € X. Then, by (4.2),

r — i (v)xo € ker(x), Vi=1,2. (4.3)
In particular, we have that x — z}(x)xo € Ga. It follows that
x5 (x) > z5(xo)x](x) = 2](z), Vo e X.

This implies that z7 = 23, which is a contradiction. Therefore, ker(z7) \ G2 # 0. Similarly,
we also have that ker(z}) \ G1 # 0. Take z1 € ker(z}) \ G2 and x2 € ker(z}) \ G1. Then
r1,T9 € G and xf(%xl + %zg) < 0 for each 7 = 1,2. This means that %xl + %xz ¢ G, and so
G is not convex.

By the definition of 7¢, it is easy to see that

T0(x; G) = min{rc(z; G1), 70 (x;Go)}, V2 e X. (4.4)
We will prove that, for each ¢ = 1,2,
0(x;Gy) = =z (x), VzeX)\G. (4.5)
To this end, fix i = 1,2 and let x € X \ G;. Then z(x) < 0, and by (4.3), one has that
To(2;Gi) < pol(z — 27 (z)2o) — x) = —aj (z)pc(20) = —j (2)
(noting that pc(xzg) = 1). On the other hand,

7o(2:Gi) = inf pelg —2) 2 nf xj(g—2) 2 —2j(2),
and the assertion (4.5) is seen to hold.
Below we prove that G is a 7¢c-B-sun of X. To this end, let z € X \ G and d := 7¢(x; G).
Without loss of generality, we may assume that

To(2;G1) < 70(2; G9). (4.6)
Then by (4.5),
d=10(x;G1) = —x7(x). (4.7)
Let go = x + dxo. Then by (4.3)
go =z —x](x)zo € ker(2]) C G1 C G. (4.8)
Moreover
pc(go — x) = dpc(wo) = d = 1c(x;G1) = 70(7; G). (4.9)

Hence gy € P&(z). We assert that go € P&(zy) for each A > 0. Granting this, G is a
nonconvex, Tc-B-sun and the proof of Theorem 4.1 is complete. Let A > 0. By (4.8) and
(4.9), we have that gy € Pgl (x). Since G is convex, it follows from Proposition 3.1 that
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Jgo € Pg1 (). Thus, to complete the proof, it suffices to show that 7¢(xy; G) = 7o(xx; G1).
To do this, note that z5(z) < zj(x) = —d by (4.5), (4.6) and (4.7). Consequently,

z3(xy) = (1= A)a5(g0) + Azs(z)

(1 =N (z3(2) + das(2o)) + Awy(x)
x5(x) +d(1 — X)

—d+d(1—-)\)

= —\d.

IN

This together with (4.5) (with x in place of x) implies that

Tc(zz; G2) > dXA = 70(2); G1)-

Therefore, 7o (zy; G) = To(x; G1) thanks to (4.4). The proof is complete. O
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