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2 Anisotropic Best τC-Approximation in Normed Spaces

1 Introduction

Let X be a real normed linear space and C be a closed, bounded, convex subset of X having

the origin as an interior point. Recall that the Minkowski function pC with respect to the set

C is defined by

pC(x) = inf{t > 0 : x ∈ tC}, ∀ x ∈ X. (1.1)

Let G be a subset of X and x ∈ X. Following [2], define the minimal time function τC(·;G)

by

τC(x;G) := inf
g∈G

pC(g − x), ∀x ∈ X. (1.2)

The study of the minimal time function τC(·;G) is motivated by its worldwide applications in

many areas of variational analysis, optimization, control theory, approximation theory, etc.,

and has received a lot of attention; see e.g., [2,6,7,9,11–13,17,18]. In particular, the proximal

subgradient of the minimal time function τC(·;G) is estimated and computed in [7, 17, 18],

for Hilbert spaces with applications to control theory; while other various subgradients such

as the Fréchet subgradients, Clark subgradients, the ϵ-subdifferential as well as the limiting

subdifferential of the minimal time function τC(·;G) in Hilbert spaces and/or general Banach

spaces are explored in [6, 9, 13].

Our interest in the present paper is focused on the following minimization problem, de-

noted by min(x,G),

min
g∈G

pC(g − x), (1.3)

where x ∈ X. Clearly, g0 ∈ G is a solution of the problem min(x,G) if and only if

pC(g0 − x) = τC(x;G).

According to [2], any solution of the problem min(x,G) is called a best τC-approximation

(or, generalized best approximation) to x from G. We denote by PC
G(x) the set of all best

τC-approximations to x from G. The generic well-posedness of the minimization problem

min(x,G) in terms of the Baire category was studied in [2,11], while the relationships between

the existence of solutions and directional derivatives of the function τC(x;G) was explored

in [12].

In the special case when C is the closed unit ball B of X, the minimal time function (1.2)

and the corresponding minimization problem (1.3) are reduced to the distance function of C

and to the classical best approximation, respectively, which has been studied extensively and

deeply, see, e.g., [3, 16,21].

One aim of the present paper is to characterize the class of subsets of X for which the

so-called τC-Kolmogorov condition holds about best τC-approximations. Another aim of the

present paper is to prove the equivalence between the smoothness of the underlying set C

and the convexity of τC-B-suns. In particular, by taking C to be the closed unit ball of

X, our results extend the corresponding ones for nonlinear approximation problems; see,

e.g., [3, 5, 21].
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2 Preliminaries

Let X be a real normed linear space and let X∗ denote its topological dual. Let A be a

nonempty subset of X. As usual, we use bdA and intA to denote respectively the boundary

and the interior of A. The polar of A is denoted by A◦ and defined by

A◦ = {x∗ ∈ X∗ : x∗(x) ≤ 1, ∀ x ∈ A}.

Then A◦ is a weakly∗-closed convex subset of X∗. Furthermore, in the case when A is a

convex bounded set with 0 ∈ int A, A◦ is weakly∗-compact with 0 ∈ int A◦. In particular,

B◦ equals the closed unit ball of X∗. Moreover, for a set A ⊆ X∗, extA and A
∗
stand for the

set of all extreme points and the weak∗-closure of A, respectively. The following proposition

is exactly the well-known Krein-Milman Theorem, see, e.g., [10].

Proposition 2.1. Suppose that A is a compact convex subset of X∗. Then A equals the

closed convex closure of extA.

Let

µ = inf
∥x∥=1

pC(x) and ν = sup
∥x∥=1

pC(x).

We end this section with some known and useful properties of the Minkowski function; see [15,

Section 1] for assertions (i)-(v) while (vi) is an immediate consequence of (iii) and (v).

Proposition 2.2. Let x, y ∈ X and x∗ ∈ X∗. Then we have the following assertions.

(i) pC(x) ≥ 0, and pC(x) = 0 ⇐⇒ x = 0.

(ii) pC(x+ y) ≤ pC(x) + pC(y).

(iii) pC(λx) = λpC(x) for each λ > 0.

(iv) pC(x) ≤ 1 ⇐⇒ x ∈ C.

(v) pC(x) = supx∗∈C◦ x∗(x) and pC◦(x∗) = supx∈C x∗(x).

(vi) µ∥x∥ ≤ pC(x) ≤ ν∥x∥.

3 Characterization of the best τC-approximation

The notion of suns introduced by Efimov and Stechkin (cf. [8]) has proved to be rather

important in nonlinear approximation theory; see, e.g., [3–5,8,21] and references therein. In

the following definition we extend this notion to the case of the generalized approximation.

Throughout the whole paper, we always assume that G ⊆ X is a nonempty subset of X, and

let x ∈ X and g0 ∈ G, unless specially stated.

Definition 3.1. The element g0 is called

(a) a τC-solar point of G with respect to x if g0 ∈ PC
G(x) implies that g0 ∈ PC

G(xλ) for

each λ > 0, where xλ = g0 + λ(x− g0);

(b) a τC-solar point of G if g0 is a τC-solar point of G with respect to each x ∈ X.

We say that G is a τC-sun of X if each point of G is a τC-solar point of G.
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Remark 3.1. We always write

xλ = g0 + λ(x− g0), ∀λ > 0 (3.1)

if no confusion caused. Thus

pC(g0 − xλ) = λpC(g0 − x), ∀λ > 0. (3.2)

Furthermore, the following implication holds (cf. [13, Lemma 3.1]:

g0 ∈ PC
G(x) =⇒ g0 ∈ PC

G(xλ), ∀ λ ∈ [0, 1]. (3.3)

For two points x, y ∈ X, we use [x, y] to denote the closed interval with ends x and y,

that is,

[x, y] := {tx+ (1− t)y : t ∈ [0, 1]}.

Recall (cf. [1]) that g0 ∈ G is a star-shaped point of G if [g0, g] ⊆ G for each g ∈ G. If

G has a star-shaped point g0, then G is called a star-shaped set with vertex g0. Clearly, a

convex subset is a star-shaped set with each vertex g0 ∈ G. We use S(g0, G) to denote the

star-shaped set with vertex g0 generated by G, that is,

S(g0, G) :=
∪
g∈G

[g0, g].

Proposition 3.1. Suppose that g0 ∈ G is a star-shaped point of G. Then g0 is a τC-solar

point of G. Consequently, any convex subset of X is a τC-sun of X.

Proof. Let x ∈ X be such that g0 ∈ PC
G(x). By Remark 3.1, we only need to show that

g0 ∈ PC
G(xλ) for each λ > 1. To this end, let λ > 1 and g ∈ G. Since g0 is a star-shaped point

of G, it follows from Proposition 2.2(iii) that

pC(g0 − x) ≤ pC

(((
1− 1

λ

)
g0 +

1

λ
g

)
− x

)
=

1

λ
pC(g − xλ).

By (3.2),

pC(g0 − xλ) = λpC(g0 − x) ≤ pC(g − xλ).

Hence, g0 ∈ PC
G(xλ). This shows that g0 is a τC-solar point of G.

The following proposition gives an equivalent condition for τC-solar points in terms of

star-shaped points.

Proposition 3.2. The element g0 is a τC-solar point of G if and only if

g0 ∈ PC
G(x) ⇐⇒ g0 ∈ PC

S(g0,G)(x), ∀ x ∈ X.

Proof. For x ∈ X, it is clear that g0 ∈ PC
S(g0,G)(x) =⇒ g0 ∈ PC

G(x). Thus, to complete the

proof, it suffices to verify that g0 is a τC-solar point of G if and only if

g0 ∈ PC
G(x) =⇒ g0 ∈ PC

S(g0,G)(x) (3.4)
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holds for each x ∈ X. To this end, let x ∈ X. By Definition 3.1 and Remark 3.1, one has

that g0 is a τC-solar point of G if and only if the following implication holds:

g0 ∈ PC
G(x) =⇒ g0 ∈ PC

G(x 1
1−λ

), ∀ λ ∈ [0, 1). (3.5)

Note by Proposition 2.2(iii) that

g0 ∈ PC
G(x 1

1−λ
), ∀ λ ∈ [0, 1)

⇐⇒ pC(g0 − x) ≤ pC((λg0 + (1− λ)g)− x), ∀g ∈ G, ∀ λ ∈ [0, 1)

⇐⇒ g0 ∈ PC
S(g0,G)(x).

Hence, (3.5) holds if and only if (3.4) holds. This completes the proof.

Definition 3.2. The element g0 is called a local best τC-approximation to x from G if there

exists an open neighborhood U(g0) of g0 such that g0 ∈ PC
G∩U(g0)

(x).

Clearly, if g0 ∈ PC
G(x), then g0 is a local best τC-approximation to x from G. The following

proposition shows that the converse remains true if g0 is a τC-solar point of G.

Proposition 3.3. Suppose that g0 is a τC-solar point of G. Then g0 ∈ PC
G(x) if and only if

g0 is a local best τC-approximation to x from G.

Proof. The necessity part is clear as noted earlier. Below we prove the sufficiency part. To

this end, suppose that g0 is a local best τC-approximation to x from G. Then there exists

an open neighborhood U(g0) of g0 such that g0 ∈ PC
U(g0)∩G(x). We claim that there is λ > 0

such that g0 ∈ PC
G(xλ). Indeed, otherwise, one has that g0 /∈ PC

G(x1/n) for each n ∈ N. Thus
there exists a sequence {gn} ⊆ G such that, for each n ∈ N,

pC(gn − x1/n) < pC(g0 − x1/n) =
1

n
pC(g0 − x). (3.6)

It follows from Proposition 2.2(vi) that limn→∞ gn = g0. This implies that there exists n0 ∈ N
such that gn0 ∈ U(g0)∩G. This together with (3.6) implies that g0 /∈ PC

U(g0)∩G(x1/n0
), which

is a contradiction by Remark 3.1 as g0 ∈ PC
U(g0)∩G(x). Hence the claim stands; that is

g0 ∈ PC
G(xλ) for some λ > 0. Noting that x = g0 +

1
λ(xλ − g0) and that g0 is a τC-solar point

of G, we have that

g0 ∈ PC
G

(
g0 +

1

λ
(xλ − g0)

)
= PC

G(x)

and completes the proof.

For the sequel study, we need to introduce the following notation:

Σg0−x := {x∗ ∈ C◦ : x∗(g0 − x) = pC(g0 − x)}.

Then Σg0−x is a nonempty, weakly∗-compact convex subset of C◦. Furthermore, write

Eg0−x := extΣg0−x. Then, Eg0−x ̸= ∅ by Proposition 2.1. Moreover, by definition, we have

that

Eg0−x = extC◦ ∩ Σg0−x. (3.7)

The notions stated in Definition 3.3 below are extension of the notions of Kolmogorov

Condition and Papini Condition in approximation theory to the setting of the best τC-

approximation theory, see, e.g., [4, 5, 21] and [14].
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Definition 3.3. The pair (x, g0) is said to satisfy

(a) the τC-Kolmogorov condition (the τC-KC, for short) if

max
x∗∈Σg0−x

x∗(g − g0) ≥ 0, ∀ g ∈ G; (3.8)

(b) the τC-Papini condition (the τC-PC, for short) if

max
x∗∈Σg−x

x∗(g0 − g) ≤ 0, ∀ g ∈ G. (3.9)

Clearly, by (3.7), Σg0−x in (3.8) and Σg−x in (3.9) can be replaced by Eg0−x and Eg−x,

respectively.

In the case when C is the closed unit ball of X, that is, pC is the norm, the notions of the

regular point and the strongly regular point were introduced and studied respectively in [5]

and [21]. The following notions of the τC-regular point and the strongly τC-regular point are

respectively generalizations of the corresponding regular point and strongly regular point in

best approximation theory.

Definition 3.4. The element g0 is called

(a) a τC-regular point of G with respect to x if for any weakly∗-closed subset A of C◦

satisfying for some g ∈ G the condition

Eg0−x ⊆ A ⊆ extC◦∗ and min
x∗∈A

x∗(g0 − g) > 0, (3.10)

there exists a sequence {gn} ⊆ G such that gn → g0 and

x∗(g0 − gn) > x∗(g0 − x)− pC(g0 − x), ∀ x∗ ∈ A, ∀ n ∈ N; (3.11)

(b) a strongly τC-regular point of G with respect to x if for any weakly∗-closed subset A

of C◦ satisfying (3.10) for some g ∈ G, there exists a sequence {gn} ⊆ G such that gn → g0
and

x∗(g0 − gn) > 0, ∀ x∗ ∈ A, ∀ n ∈ N. (3.12)

We say that G is a τC-regular set (resp. strongly τC-regular set) of X if each point of G

is a τC-regular point (resp. strongly τC-regular point) of G with respect to each x ∈ X.

Roughly speaking, a τC-regular point g0 of G with respect to x means that, for any

weakly∗-closed neighbourhood A of the extreme set Eg0−x, if there exists some g ∈ G such

that g0 − g is positive on A, then any neighbourdhood of g0 contains an element g′ ∈ G such

that g0 − g′ has the same sign as g0 − g on the set Eg0−x while out of this set it can have

opposite sign but have to be controlled within pC(g0 − x)− x∗(g0 − x); while, for a strongly

τC-regular point g0, g0 − g′ must have the same sign as g0 − g on the whole weakly∗-closed

neighbourhood A.

Remark 3.2. Clearly, the strong τC-regularity implies the τC-regularity. We don’t know

wether the converse is true even in the case when C is the closed unit ball of X.

Remark 3.3. Clearly, any interior point of G is a strongly τC-regular point of G. Moreover,

it is not difficult to check that any star-shaped point of G is a strongly τC-regular point of G.
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Below we provide an example to illustrate the notions.

Example 3.1. Let X := R2 be the 2-dimensional Euclidean space. Let C be the equilateral

triangle with the vertexes (0, 2), (
√
3,−1) and (−

√
3,−1) (see Figure 1). Then 0 ∈ intC and

C◦ is the equilateral triangle with vertexes x∗1, x
∗
2, x

∗
3, where x∗1 :=

(√
3
2 , 12

)
, x∗2 := (0,−1) and

x∗3 :=
(
−

√
3
2 , 12

)
, and so extC◦ = {x∗1, x∗2, x∗3} (see Figure 2). Let G be the subset defined by

G =

{
(t1, t2) : t2 ≥

1

2
t1, t1 ≤ 0

}∪{
(t1, t2) : t2 ≥ −1

2
t1, t1 ≥ 0

}
(see Figure 3). Clearly, G is not convex. We shall show that G is a strongly τC-regular

set. To this end, let g0 ∈ G. By Remark 3.3, we assume, without loss of generality, that

g0 = (a1, a2) ∈ bdG satisfies that

a1 > 0 and a2 = −1

2
a1 (3.13)

(noting that the origin is a star-shaped point of G). Let A be a weakly∗-closed subset of C◦

satisfying (3.10) for some g = (b1, b2) ∈ G and some x ∈ X. In the case when b1 ≥ 0 and

b2 ≥ −1
2b1, choose gn = (1− 1

n)g0 +
1
ng ∈ G for each n ∈ N. Then it is easy to see that {gn}

is as desired. Below we consider the case when b1 ≤ 0 and b2 ≥ 1
2b1. It follows from (3.13)

that

(a2 − b2)−
1

2
(a1 − b1) = −a1 +

1

2
b1 − b2 ≤ −a1 < 0.

Consequently,

x∗3(g0 − g) = −
√
3

2
(a1 − b1) +

1

2
(a2 − b2) ≤ −

√
3

2
(a1 − b1) +

1

4
(a1 − b1) =

3

8
(1− 2

√
3)a1 < 0.

This means that x∗3 /∈ A. Therefore, it suffices to consider the case when A = {x∗1, x∗2}. To

this end, let gn =
(
1− 1

n

)
g0 for each n ∈ N. Then {gn} ⊆ G and gn → g0. Noting that

x∗1(g0) =
(√

3
2 − 1

4

)
a1 and x∗2(g0) =

1
2a1, we have that

min
x∗∈A

x∗(g0 − gn) =
1

n
min
x∗∈A

x∗(g0) =
1

2n
a1 > 0, ∀n ∈ N.

This means that g0 is a strongly regular point of G, and so G is a strongly τC-regular set.

t1

t2

Figure   1

(-
√

3,−1) (
√

3,−1)

(0,2)

t2

t1

(-
√

3

2
, 1

2
) (

√

3

2
, 1

2
)

(0,−1)

Figure   2

t2 =
1

2
t1 t2 = −

1

2
t1

t1

t2

G

Figure   3
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Theorem 3.1. Consider the following assertion:

(i) The pair (x, g0) satisfies the τC-KC.

(ii) The point g0 ∈ PC
G(x).

(iii) The pair (x, g0) satisfies the τC-PC.

Then (i)=⇒(ii)=⇒(iii). In addition, if g0 is a strongly τC-regular point of G with respect to

x, then (i)⇐⇒(ii)⇐⇒(iii).

Proof. (i)=⇒(ii). Suppose that (i) holds and let g ∈ G. Then by Definition 3.3 (a) , there

exists x∗ ∈ Σg0−x such that x∗(g − g0) ≥ 0. This together with Proposition 2.2 (v) implies

that

pC(g0 − x) = x∗(g0 − g) + x∗(g − x) ≤ x∗(g − x) ≤ pC(g − x);

hence, g0 ∈ PC
G(x) as g ∈ G is arbitrary and (ii) is proved.

(ii)=⇒(iii). Suppose that (ii) holds. Let g ∈ G and x∗ ∈ Σg−x. Then x∗(g − x) =

pC(g − x); hence

x∗(g0 − g) = x∗(g0 − x) + x∗(x− g) ≤ pC(g0 − x)− pC(g − x) ≤ 0.

This shows that (x, g0) satisfies the τC-PC and (iii) is proved.

Suppose that g0 is a strongly τC-regular point of G with respect to x. It suffices to prove

the implication (iii)=⇒(i). To this end, suppose on the contrary that (x, g0) does not satisfy

the τC-KC. Then there exist g ∈ G and δ > 0 such that

max
x∗∈Σg0−x

x∗(g − g0) = −δ. (3.14)

Let

U = {x∗ ∈ extC◦∗ : x∗(g − g0) < −δ

2
} and A = U

∗
. (3.15)

Then A is a weakly∗-closed subset of C◦ satisfying Eg0−x ⊆ A ⊆ extC◦∗ and

min
x∗∈A

x∗(g0 − g) ≥ δ

2
> 0. (3.16)

Since g0 is a strongly τC-regular point of G with respect to x, there exists a sequence {gn} ⊆ G

such that

lim
n→∞

gn = g0 (3.17)

and

min
x∗∈A

x∗(g0 − gn) > 0, ∀ n ∈ N. (3.18)

Let K = extC◦∗ \ U . Then K is the weakly∗-compact subset of extC◦∗. Moreover, we have

that K ∩ Σg0−x = ∅ because Eg0−x ⊂ U by (3.14) and (3.15). Consequently,

α := max
x∗∈K

x∗(g0 − x) < pC(g0 − x). (3.19)

Set

α0 :=
1

2
(pC(g0 − x)− α). (3.20)
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As limn→∞ gn = g0 by (3.17), one has from Proposition 2.2 (vi) that there exists n0 ∈ N
such that

max{pC(gn0 − g0), pC(g0 − gn0)} < α0. (3.21)

Thus

pC(g0 − x) ≤ pC(g0 − gn0) + pC(gn0 − x) < α0 + pC(gn0 − x). (3.22)

It follows from Proposition 2.2 (v), (3.19)-(3.22) that

max
x∗∈K

x∗(gn0 − x) ≤ max
x∗∈K

x∗(gn0 − g0) + max
x∗∈K

x∗(g0 − x)

≤ pC(gn0 − g0) + α

< α0 + α

= pC(g0 − x)− α0

< pC(gn0 − x).

This shows that K ∩ Egn0−x = ∅, and so Egn0−x ⊆ extC◦∗ \K = U . Therefore,

max
x∗∈Egn0−x

x∗(g0 − gn0) ≥ inf
x∗∈U

x∗(g0 − gn0) = min
x∗∈A

x∗(g0 − gn0) > 0

thanks to (3.18). Thus, maxx∗∈Σgn0−x x
∗(g0 − gn0) > 0 by (3.7). This contradicts the τC-PC

for the pair (x, g0), and the proof is complete.

Remark 3.4. One natural and interesting question is: Wether the implication (iii)=⇒(i)

remains true under simple (not strong) regularity assumption? Even in the case when C is

the unit closed ball, we don’t know the answer and so we leave it open.

The main result of this section is a generalization of [4, Theorem 9].

Theorem 3.2. The following assertions are equivalent.

(i) The element g0 is a τC-solar point of G with respect to x.

(ii) The element g0 ∈ PC
G(x) if and only if (x, g0) satisfies the τC-KC.

(iii) The element g0 is a τC-regular point of G with respect to x.

Proof. (i)=⇒(ii). Suppose that (i) holds. The sufficiency part of (ii) follows directly from

Theorem 3.1. Below we show the necessity part of (ii). To this end, we assume that g0 ∈
PC
G(x). Without loss of generality, we may assume that x ̸= g0 and pC(g0 − x) ̸= 0. Let

g ∈ G\{g0} be arbitrary. Then g0 ∈ PC
[g0,g]

(x) by Proposition 3.2 and [g0, g]∩ int(C+x) = ∅.
Thus, by the separation theorem (cf. [10]), there exist y∗ ∈ X∗ \ {0} and a real number r

such that

y∗(z − x) ≥ r, ∀ z ∈ [g0, g] (3.23)

and

y∗(y − x) ≤ r, ∀ y ∈ C + x. (3.24)

In particular, we have that pC◦(y∗) ≤ r by Proposition 2.2(v). Let x∗ = r−1y∗. Then

pC◦(x∗) ≤ 1 and so x∗ ∈ C◦. Since g0 ∈ [g0, g] ∩ (C + x), it follows from (3.23) and (3.24)

that

r = y∗(g0 − x). (3.25)
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This implies that x∗(g0−x) = 1 = pC(g0−x), and so x∗ ∈ Σg0−x. Furthermore, x∗(g−g0) ≥ 0

thanks to (3.23) and (3.25). Hence the necessity part holds as g ∈ G \ {g0} is arbitrary and

the implication is proved.

(ii)=⇒(i). Suppose that (ii) holds and assume that g0 ∈ PC
G(x). Then

max
x∗∈Σg0−x

x∗(g − g0) ≥ 0, ∀ g ∈ G. (3.26)

Let λ > 0 be arbitrary. Noting that g0 − xλ = λ(g0 − x), one has that Σg0−xλ
= Σg0−x.

This together with (3.26) implies that (xλ, g0) satisfies the τC-KC, and so g0 ∈ PC
G(xλ). This

shows that g0 is a τC-solar point of G with respect to x.

(ii)=⇒(iii). Suppose that (ii) holds. Let g ∈ G and A be a weakly∗-closed subset of C◦

satisfying (3.10). Then

max
x∗∈Eg0−x

x∗(g − g0) ≤ max
x∗∈A

x∗(g − g0) < 0.

This together with (3.7) implies that (x, g0) does not satisfy the τC-KC; hence, g0 /∈ PC
G(x)

by (ii). Since g0 is a τC-solar point of G with respect to x by the equivalence of (i) and (ii)

just proved, it follows from Proposition 3.3 that g0 is not local best τC-approximation to x

from G. Thus there exists a sequence {gn} ⊆ G such that gn → g0 and

pC(gn − x) < pC(g0 − x), ∀ n ∈ N. (3.27)

Let x∗ ∈ A be arbitrary. Then, x∗(gn − x) ≤ pC(gn − x) for each n ∈ N. This and (3.27)

imply that

x∗(g0 − gn) ≥ x∗(g0 − x)− pC(gn − x) > x∗(g0 − x)− pC(g0 − x), ∀ n ∈ N.

In view of Definition 3.4, g0 is a τC-regular point of G.

(iii)=⇒(ii). Suppose that (iii) holds. By Theorem 3.1 (i), it suffices to prove that (x, g0)

satisfies the τC-KC whenever g0 ∈ PC
G(x). To this end, we assume on the contrary that it

is not the case. Then, there are g ∈ G and δ > 0 such that (3.14) holds. Let U and A be

defined by (3.15). Then (3.16) holds. Since g0 is a τC-regular point of G with respect to x,

there exists a sequence {gn} ⊆ G such that limn→∞ gn = g0 and (3.11) holds. This together

with Proposition 2.2 implies that

max
x∗∈A

x∗(gn − x) < pC(g0 − x), ∀ n ∈ N. (3.28)

On the other hand, let K = extC◦∗ \ U . Then there is ϵ > 0 such that

max
x∗∈K

x∗(g0 − x) < pC(g0 − x)− ϵ. (3.29)

Since limn→∞ gn = g0, one has that limn→∞ pC(gn − g0) = 0. Let n0 ∈ N be such that

pC(gn0 − g0) < ϵ. It follows from (3.29) that

max
x∗∈K

x∗(gn0 − x) ≤ pC(gn0 − g0) + max
x∗∈K

pC(g0 − x) < pC(g0 − x). (3.30)

Combining (3.28) and (3.30), we obtain that pC(gn0 − x) < pC(g0 − x), which contradicts

that g0 ∈ PC
G(x). The proof is complete.
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The following corollary is a global version of Theorem 3.2.

Corollary 3.1. The following statements are equivalent.

(i) G is a τC-sun of X.

(ii) For each g0 ∈ G and each x ∈ X, g0 ∈ PC
G(x) if and only if (x, g0) satisfies the τC-KC.

(iii) G is a τC-regular set.

4 Smoothness and convexity of τC-B-suns

We begin with the notion of smooth convex sets (cf. [10]). Let x ∈ bdC and x∗ ∈ C◦. Recall

that x∗ is a supporting functional of C at x if x∗(x) = 1.

Definition 4.1. The set C is called smooth if each point of bdC has a unique supporting

functional.

The following notion extends a similar concept introduced in [3].

Definition 4.2. The set G is called a τC-B-sun of X if for each x ∈ X there exists g0 ∈ PC
G(x)

such that g0 is a τC-solar point of G with respect to x.

Remark 4.1. Clearly, if G is a existence set (i.e., PC
G(x) ̸= ∅ for each x ∈ X), then a τC-sun

must be τC-B-sun. The converse is not true in general, see [21, Example 1.4] for the case

when C is the unit ball of X.

The main result of this section is as follows, which extends [3, Theorem 2.5] to the setting

of the best τC-approximation.

Theorem 4.1. The set C is smooth if and only if each τC-B-sun of X is convex.

Proof. “=⇒”. Suppose that C is smooth and G is a τC-B-sun of X. It suffices to verify

that 1
2(g1 + g2) ∈ G for each pair of elements g1, g2 ∈ G. To this end, let g1, g2 ∈ G and let

x = 1
2(g1 + g2). By Definition 4.2 there exists g0 ∈ PC

G(x) such that g0 is a τC-solar point of

G with respect to x. It follows from Theorem 3.2 that there exist x∗1, x
∗
2 ∈ Σg0−x such that

x∗i (gi − g0) ≥ 0, ∀ i = 1, 2. (4.1)

Suppose that g0 ̸= x and consider the point ȳ := (g0 − x)/pC(g0 − x). Then ȳ ∈ C and

x∗i (ȳ) = 1 for each i = 1, 2. Noting that each x∗i ∈ C◦, we have that x∗i , i = 1, 2, are

supporting functionals of C◦ at ȳ. Hence, x∗1 = x∗2 by the smoothness of C. Let x∗ = x∗1.

Then

pC(g0 − x) = x∗(g0 − x) =
1

2
x∗(g0 − g1) +

1

2
x∗(g0 − g2) ≤ 0

thanks to (4.1). By Proposition 2.2 (i), one has x = g0, which is a contradiction, and hence
1
2(g1 + g2) ∈ G.

“⇐=”. Conversely, suppose on the contrary that C is not smooth. Then there exist

x0 ∈ bdC and two functional x∗1, x
∗
2 ∈ C◦ such that

x1 ̸= x∗2 and x∗1(x0) = x∗2(x0) = 1. (4.2)
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Let Gi := {x ∈ X : x∗i (x) ≥ 0} for each i = 1, 2, and let G = G1 ∪ G2. Then G is a closed

and nonconvex subset of X. In fact, the closedness is clear. To prove the nonconvexity, we

first prove that ker(x∗1) \ G2 ̸= ∅, where ker(x∗) := {x ∈ X : x∗(x) = 0} is the kernel of the

functional x∗. Indeed, otherwise, one has that ker(x∗1) ⊆ G2. Let x ∈ X. Then, by (4.2),

x− x∗i (x)x0 ∈ ker(x∗i ), ∀ i = 1, 2. (4.3)

In particular, we have that x− x∗1(x)x0 ∈ G2. It follows that

x∗2(x) ≥ x∗2(x0)x
∗
1(x) = x∗1(x), ∀ x ∈ X.

This implies that x∗1 = x∗2, which is a contradiction. Therefore, ker(x∗1) \ G2 ̸= ∅. Similarly,

we also have that ker(x∗2) \ G1 ̸= ∅. Take x1 ∈ ker(x∗1) \ G2 and x2 ∈ ker(x∗2) \ G1. Then

x1, x2 ∈ G and x∗i (
1
2x1 +

1
2x2) < 0 for each i = 1, 2. This means that 1

2x1 +
1
2x2 /∈ G, and so

G is not convex.

By the definition of τC , it is easy to see that

τC(x;G) = min{τC(x;G1), τC(x;G2)}, ∀ x ∈ X. (4.4)

We will prove that, for each i = 1, 2,

τC(x;Gi) = −x∗i (x), ∀ x ∈ X \Gi. (4.5)

To this end, fix i = 1, 2 and let x ∈ X \Gi. Then x∗i (x) < 0, and by (4.3), one has that

τC(x;Gi) ≤ pC((x− x∗i (x)x0)− x) = −x∗i (x)pC(x0) = −x∗i (x)

(noting that pC(x0) = 1). On the other hand,

τC(x;Gi) = inf
g∈Gi

pC(g − x) ≥ inf
g∈Gi

x∗i (g − x) ≥ −x∗i (x),

and the assertion (4.5) is seen to hold.

Below we prove that G is a τC-B-sun of X. To this end, let x ∈ X \G and d := τC(x;G).

Without loss of generality, we may assume that

τC(x;G1) ≤ τC(x;G2). (4.6)

Then by (4.5),

d = τC(x;G1) = −x∗1(x). (4.7)

Let g0 = x+ dx0. Then by (4.3)

g0 = x− x∗1(x)x0 ∈ ker(x∗1) ⊆ G1 ⊆ G. (4.8)

Moreover

pC(g0 − x) = dpC(x0) = d = τC(x;G1) = τC(x;G). (4.9)

Hence g0 ∈ PC
G(x). We assert that g0 ∈ PC

G(xλ) for each λ > 0. Granting this, G is a

nonconvex, τC-B-sun and the proof of Theorem 4.1 is complete. Let λ > 0. By (4.8) and

(4.9), we have that g0 ∈ PC
G1

(x). Since G1 is convex, it follows from Proposition 3.1 that
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g0 ∈ PC
G1

(xλ). Thus, to complete the proof, it suffices to show that τC(xλ;G) = τC(xλ;G1).

To do this, note that x∗2(x) ≤ x∗1(x) = −d by (4.5), (4.6) and (4.7). Consequently,

x∗2(xλ) = (1− λ)x∗2(g0) + λx∗2(x)

= (1− λ)(x∗2(x) + dx∗2(x0)) + λx∗2(x)

= x∗2(x) + d(1− λ)

≤ −d+ d(1− λ)

= −λd.

This together with (4.5) (with xλ in place of x) implies that

τC(xλ;G2) ≥ dλ = τC(xλ;G1).

Therefore, τC(xλ;G) = τC(xλ;G1) thanks to (4.4). The proof is complete.
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Vektorräumen, J. Approx. Theory 3 (1970) 369-397.

[6] G. Colombo, P. R. Wolenski, Variational analysis for a class of minimal time functions

in Hilbert spaces, J. Conv. Anal. 11 (2004) 335-361.

[7] G. Colombo, P. R. Wolenski, The subgradient formula for the minimal time function in

the case of constant dynamics in Hilbert sapce, J. Global Optim. 28 (2004) 269-282.

[8] N.V. Efimov, S.B. Stechkin, Some properties of Chebyshev sets, Dokl. Akad. Nauk SSSR

118 (1958) 17-19.

[9] Y. He, K. F. Ng, Subdifferentials of a minimum time function in Banach spaces, J. Math.

Anal. Appl. 321 (2006) 896-910.

[10] R.B. Holmes, Geometrical Functional and Applications, Springer-Verlag, 1975.

[11] C. Li, On well posed generalized best approximation problems, J. Approx. Theory 107

(2000) 96-108.

[12] C. Li, R. Ni, Derivatives of generalized distance functions and existence of generalized

nearest points, J. Approx. Theory 115 (2002) 44-55.

[13] B. S. Mordukhovich, N. M. Nam, Limiting subgradients of minimal time functions in

Banach spaces, to appear.



14 Anisotropic Best τC-Approximation in Normed Spaces

[14] P. L. Papini, Approximation and norm derivatives in real normed spaces, Resulte De

Math. 5 (1982) 81-94.

[15] R. R. Phelps, Convex Functions, Monotonic Operators and Differentiability, 2nd edition,

Lecture Notes Math. 1364, Spring-Verlag, 1993

[16] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspace,

Springer-Verlag, 1970.

[17] P. Soravia, Generalized motion of a propagating along its normal direction: a differential

games approach, Nonlinear Anal. 22 (1994) 1427-1262.

[18] P. R. Wolenski, Y. Zhuang, Proximal analysis and the minimal time function, SIAM J.

Control Optim. 36 (1998) 1048-1072.

[19] S.Y. Xu, C. Li, Characterization of best simultaneous approximation, Acta Math. Sinica

30 (1987) 528-535 (in Chinese).

[20] S.Y. Xu, C. Li, Characterization of best simultaneous approximation, Approx. Theory

Appl. 3 (1987) 190-198.

[21] S.Y. Xu, C. Li, W.S. Yang, Nonlinear Approximation Theory in Banach Space, Science

Press, Beijing, 1997 (in Chinese).


