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Abstract In this paper, we consider a variational inequality with a variational in-
equality constraint over a set of fixed points of a nonexpansive mapping called triple
hierarchical variational inequality. We propose two iterative methods, one is implicit
and another one is explicit, to compute the approximate solutions of our problem.
We present an example of our problem. The convergence analysis of the sequences
generated by the proposed methods is also studied.

Keywords Triple hierarchical variational inequalities · Iterative methods · Implicit
schemes · Explicit schemes · Fixed points · Nonexpansive mappings

1 Introduction

In the last two decades, the bilevel programming problems have been extensively
studied in the literature because of their applications in mechanics and network de-
sign; see, for example, [1, 2] and the references therein. In the bilevel programming
problems, the constraint set is a solution set of another problem, namely, optimization
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problem, variational inequality, fixed point problem, etc. For details and applications
of variational inequalities, we refer to [3–7] and the references therein. A variational
inequality over the set of fixed points of a mapping is called a hierarchical variational
inequality, also known as a hierarchical fixed point problem. It is worth to mention
that the signal recovery [8], beamforming [9] and power control [10] can be written
in the form of a hierarchical variational inequality. Such a problem is also a bilevel
problem, in which we find a solution of the first problem subject to the condition
that its solution also be a fixed point of a mapping. For further details on hierarchical
fixed point problems and their applications, we refer to [8, 11–24] and the refer-
ences therein. The solution presented in [15, 17] is not always unique. So, it must be
found from among candidate solutions. Therefore, it would be reasonable to identify
the unique minimizer of an appropriate objective function over the hierarchical fixed
point constraint. To find a such unique minimizer, Iiduka [25, 26] introduced a triple
hierarchical variational inequality (IHVI) and proposed an iterative method to find its
solution.

The present paper is in twofold. First, we combine the regularization method, the
hybrid steepest-descent method, and the projection method to propose an implicit
scheme that generates a net in an implicit way, and study its strong convergence to a
unique solution of the THVI. Second, we introduce an explicit scheme that generates
a sequence via an iterative algorithm and prove that this sequence converges strongly
to a unique solution of the THVI. In particular cases, the results presented in this
paper reduce to the corresponding results in [24].

2 Formulations and Preliminaries

We write to indicate that the sequence {xn} converges weakly to x.
Throughout the paper, unless otherwise specified, we denote by xn → x (respec-

tively, xn ⇀ x), the strong (respectively, weak) convergence of the sequence {xn} to
x. We assume that H be a real Hilbert space, whose inner product and norm are de-
noted by 〈·, ·〉 and ‖ · ‖, respectively. We also assume that C be a nonempty, closed,
and convex subset of H and f : C → H be a (possibly nonself) ρ-contraction map-
ping with contractivity constant ρ ∈ [0,1[.

Let F : C → H be κ-Lipschitzian and η-strongly monotone, where κ > 0 and
η > 0 are constants, that is,

‖Fx − Fy‖ ≤ κ‖x − y‖, ∀x, y ∈ C (1)

and

〈Fx − Fy,x − y〉 ≥ η‖x − y‖2, ∀x, y ∈ C. (2)

Let T : H → H be a nonexpansive mapping such that the set of fixed points of T ,
Fix(T ) = {x ∈ H : T x = x} 
= ∅. In 2001, Yamada [20] introduced the so-called hy-
brid steepest-descent method for solving hierarchical variational inequality (in short,
HVI) of finding x∗ ∈ Fix(T ) such that

〈
Fx∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T ). (3)
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This method generates a sequence {xn} via the following iterative algorithm:

xn+1 = T xn − λn+1μF(T xn), ∀n ≥ 0, (4)

where 0 < μ < 2η/κ2, the initial guess x0 ∈ H is arbitrary and the sequence {λn} in
]0,1[ satisfies the following conditions:

λn → 0,

∞∑

n=0

λn = ∞ and
∞∑

n=0

|λn+1 − λn| < ∞.

A key fact in Yamada’s argument is that, for small enough λ > 0, the mapping

T λx := T x − λμF(T x), ∀x ∈ H

is a contraction due to the κ-Lipschitz continuity and η-strong monotonicity of F .
However, this method cannot be applied to the following HVI considered in [24]:
find x∗ ∈ Fix(T ) such that

〈
(I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T ), (5)

where T ,S : C → C are two nonexpansive mappings and Fix(T ) = {x ∈ C : T x = x}
is the set of fixed points of T . Let Ω denote the set of solutions of HVI (5) and assume
that Ω is nonempty; consequently, the metric projection PΩ is well defined. It is in-
teresting to find the minimum-norm solution x∗ of the HVI (5) which exists uniquely
and is exactly the nearest point projection of the origin to Ω , that is, x∗ = PΩ(0).
Alternatively, x∗ is the unique solution of the quadratic minimization problem:

∥∥x∗∥∥2 = min
{‖x‖2 : x ∈ Ω

}
. (6)

Yao et al. [24] used the contractions to regularize the nonexpansive mapping S to pro-
pose an implicit scheme that generates a net {xt }t∈]0,1[ in an implicit way and proved
the strong convergence of {xt } to a minimum-norm solution x∗ of the HVI (5). They
also introduced an explicit scheme that generates a sequence {xn} via an iterative
algorithm and proved that this sequence converges strongly to the same minimum-
norm solution x∗ of the HVI (5). Recently, Mainge and Moudafi [15] and Lu et al.
[27] introduced a hybrid iterative method and a regularization method, respectively,
for solving HVI (5).

Very recently, Iiduka [25, 26] considered a variational inequality with a variational
inequality constraint over the set of fixed points of a nonexpansive mapping. Since
this problem has a triple structure in contrast with bilevel programming problems or
hierarchical constrained optimization problems or hierarchical fixed point problem,
it is referred as triple hierarchical constrained optimization problem (THCOP). He
presented some examples of THCOP and developed iterative algorithms to find the
solution of such a problem. The convergence analysis of the proposed algorithms is
also studied in [25, 26]. Since the original problem is a variational inequality, in this
paper, we call it triple hierarchical variational inequality (THVI).

Let S,T : C → C be two nonexpansive mappings with Fix(T ) 
= ∅. Let

0 < μ < 2η/κ2 and 0 < γ ≤ τ,
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where τ = 1−√
1 − μ(2η − μκ2). We consider the following triple hierarchical vari-

ational inequality (for short, THVI): find x∗ ∈ Ξ such that

〈
(μF − γf )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ, (7)

where Ξ denotes the solution set of the following hierarchical variational inequality:
find z∗ ∈ Fix(T ) such that

〈
(μF − γ S)z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T ); (8)

where we assume that the solution set of HVI (8) is nonempty.
We present an example of a THVI. It also shows the relevance of generalization of

double hierarchical variational inequality to triple hierarchical variational inequality.

Example 2.1 Let H = R
2 with inner product 〈·, ·〉 and norm ‖ · ‖ are defined by

〈x, y〉 = ac + bd and ‖x‖ =
√

a2 + b2

for all x, y ∈ R
2 with x = (a, b) and y = (c, d). Let C = {x ∈ R

2 : ‖x‖ ≤ √
2}.

Clearly, C is a nonempty, bounded, and closed convex subset of R
2. Let f be

a 2 × 2 positive semidefinite matrix such that 0 < ‖f ‖ < 1, for instance, putting

f = { 1
3 − 1

3

− 1
3

1
3

}
, we know that ‖f ‖ = 2

3 and f : C → C is a ρ-contraction with

contractivity constant ρ = 2
3 . Let F = 1

2I = { 1
2 0

0 1
2

}
. Then F : C → C is a κ-

Lipschitzian and η-strongly monotone operator with constants κ = 1
2 and η = 1

2 ,
respectively. Take μ = 2 and γ = 1 such that 0 < μ < 2η/κ2 and 0 < γ ≤ τ where
τ = 1 − √

1 − μ(2η − μκ2) = 1. Let T and S be two 2 × 2 positive definite matrices

such that ‖T ‖ = ‖S‖ = 1, for instance, putting T = { 2
3

1
3

1
3

2
3

}
and S = { 3

5
2
5

2
5

3
5

}
, we know

that ‖T ‖ = ‖S‖ = 1 and that S,T : C → C are two nonexpansive mappings with
Fix(T ) = {(a, a) : |a| ≤ 1} 
= ∅.

We observe that the solution set Ξ of the HVI is the following:

Ξ = {
z∗ ∈ Fix(T ) : 〈(μF − γ S)z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T )

}

= {
z∗ ∈ Fix(T ) : 〈(I − S)z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T )

}

= {
z∗ ∈ Fix(T ) : 〈0, z − z∗〉 ≥ 0, ∀z ∈ Fix(T )

}

= Fix(T ) = {(a, a) : |a| ≤ 1} 
= ∅.

Further, it is easy to see that there exists a unique solution x∗ = (0,0) to the following
THVI: find x∗ ∈ Ξ (= Fix(T )) such that

〈
(μF − γf )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ.

(Namely,
〈
(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ.)
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Now, we present some known results and definitions which will be used in the
sequel.

The metric (or nearest point) projection from H onto C is the mapping PC : H →
C which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the prop-
erty

‖x − PCx‖ = inf
y∈C

‖x − y‖ =: d(x,C).

The following properties of projections are useful and pertinent to our purpose.

Lemma 2.1 For any given x ∈ H and z ∈ C.

(i) z = PCx if and only if 〈x − z, y − z〉 ≤ 0, for all y ∈ C.
(ii) z = PCx if and only if ‖x − z‖2 ≤ ‖x − y‖2 − ‖y − z‖2, for all y ∈ C.

(iii) For all x, y ∈ H ,

〈PCx − PCy,x − y〉 ≥ ‖PCx − PCy‖2.

Consequently, PC is nonexpansive and monotone.

Below we gather some basic facts that are needed in the sequel.

Lemma 2.2 [28, Demiclosedness Principle] Let C be a nonempty, closed, and con-
vex subset of a real Hilbert space H and let T : C → C be a nonexpansive mapping
with Fix(T ) 
= ∅. If {xn} is a sequence in C converges weakly to x and if {(I − T )xn}
converges strongly to y, then (I − T )x = y; in particular, if y = 0, then x ∈ Fix(T ).

The following lemma plays a key role in proving strong convergence of the se-
quences generated by our algorithms.

Lemma 2.3 [29, Lemma 2.1] Let {sn} be a sequence of nonnegative numbers satis-
fying the condition

sn+1 ≤ (1 − γn)sn + γnδn, ∀n ≥ 0,

where {γn}, {δn} are sequences of real numbers such that

(i) {γn} ⊂ [0,1] and
∑∞

n=0 γn = ∞, or equivalently,

∞∏

n=0

(1 − γn) := lim
n→∞

n∏

k=0

(1 − γk) = 0;

(ii) lim supn→∞ δn ≤ 0, or
(ii)′

∑∞
n=0 γnδn is convergent.

Then, limn→∞ sn = 0.

The following lemma is not hard to prove.
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Lemma 2.4 [30] Let f : C → H be a ρ-contraction with ρ ∈ [0,1[ and T : C → C

be a nonexpansive mapping. Then

(i) I − f is (1 − ρ)-strongly monotone:

〈(I − f )x − (I − f )y, x − y〉 ≥ (1 − ρ)‖x − y‖2, ∀x, y ∈ C;
(ii) I − T is monotone:

〈(I − T )x − (I − T )y, x − y〉 ≥ 0, ∀x, y ∈ C.

The following fact is straightforward but useful.

Lemma 2.5 There holds the following inequality in an inner product space X:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ X.

Lemma 2.6 [29, Lemma 3.1] Let λ be a number in ]0,1] and let μ > 0. Let F : C →
H be an operator on C such that, for some constants κ , η > 0, F is κ-Lipschitzian
and η-strongly monotone. Associating with a nonexpansive mapping T : C → C,
define the mapping T λ : C → H by

T λx := T x − λμF(T x), ∀x ∈ C.

Then T λ is a contraction provided μ < 2η/κ2, that is,
∥∥T λx − T λy

∥∥ ≤ (1 − λτ)‖x − y‖, ∀x, y ∈ C,

where τ = 1 − √
1 − μ(2η − μκ2) ∈]0,1].

Remark 2.1 Put F = 1
2I , where I is the identity operator of H . Then we have μ <

2η/κ2 = 4. Also, put μ = 2. Then it is easy to see that κ = η = 1
2 and

τ = 1 −
√

1 − μ(2η − μκ2) = 1 −
√

1 − 2

(
2 · 1

2
− 2

(
1

2

)2)
= 1.

In particular, whenever λ > 0, we have T λx := T x − λμF(T x) = (1 − λ)T x.

3 An Implicit Scheme

Our method depends on a regularization on the nonexpansive mapping S in HVI (8).
More precisely, we use the (possibly nonself) contraction f in THVI (7) and a real
number t ∈ ]0,1[ to construct the contraction tf + (1− t)S such that S is regularized.
To get involved with the second nonexpansive mapping T in HVI (8), we make a
linear combination sγ (tf + (1 − t)S) + (I − sμF)T of the regularization tf + (1 −
t)S and the steepest-descent technique (I − sμF)T , where s ∈ ]0,1[. This mapping
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is still a contraction. However, it may be a nonself-mapping on C since F and f can
be nonself. So, in order to remain in C, we apply the nearest point projection PC from
H onto C. That is, we consider the contraction mapping

x �→ fs,t (x) := PC[sγ (tf + (1 − t)S) + (I − sμF)T ]x.

Note that this contraction is a self-mapping on C. It is easy to find that the contraction
coefficient of fs,t is 1 − (1 − ρ)γ st . Indeed, in terms of Lemma 2.6 we obtain that
for each x, y ∈ C

‖fs,t (x) − fs,t (y)‖
= ‖PC[sγ (tf + (1 − t)S) + (I − sμF)T ]x − PC[sγ (tf + (1 − t)S)

+ (I − sμF)T ]y‖
≤ ‖[sγ (tf + (1 − t)S) + (I − sμF)T ]x − [sγ (tf + (1 − t)S)

+ (I − sμF)T ]y‖
≤ sγ ‖(tf + (1 − t)S)x − (tf + (1 − t)S)y‖ + ‖(I − sμF)T x

− (I − sμF)Ty‖
≤ sγ ‖tf (x) + (1 − t)Sx − tf (y) − (1 − t)Sy‖ + (1 − sτ )‖x − y‖
≤ sγ [t‖f (x) − f (y)‖ + (1 − t)‖Sx − Sy‖] + (1 − sτ )‖x − y‖
≤ sγ [tρ‖x − y‖ + (1 − t)‖x − y‖] + (1 − sτ )‖x − y‖
= sγ (1 − t (1 − ρ))‖x − y‖ + (1 − sτ )‖x − y‖
= {1 − s[τ − γ (1 − t (1 − ρ))]}‖x − y‖
≤ (1 − stγ (1 − ρ))‖x − y‖

due to 0 < γ ≤ τ . Since 0 < γ ≤ τ ≤ 1, 0 ≤ ρ < 1 and 0 < s, t < 1, we get stγ (1 −
ρ) < γ (1 − ρ) ≤ 1. This implies that the contraction coefficient of fs,t is 1 − (1 −
ρ)γ st . Hence, by the Banach contraction principle, fs,t has a unique fixed point
which is denoted by xs,t ∈ C, that is, xs,t is the unique solution in C of the fixed-
point equation

xs,t = PC[sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t ]. (9)

Additionally, if we take f = 0, then (9) reduces to

xs,t = PC[γ s(1 − t)Sxs,t + (I − sμF)T xs,t ]. (10)

In particular, whenever μ = 2, F = 1
2I and γ = τ = 1, the implicit schemes (9)

and (10) reduce to the following implicit schemes, respectively:

xs,t = PC[s(tf (xs,t ) + (1 − t)Sxs,t ) + (1 − s)T xs,t ] (11)
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and

xs,t = PC[s(1 − t)Sxs,t + (1 − s)T xs,t ]. (12)

Below is the first result of this paper which displays the behavior of the net {xs,t }
as s → 0 and t → 0 successively.

Theorem 3.1 Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator
with constants κ and η > 0, respectively, f : C → H be a ρ-contraction with coeffi-
cient ρ ∈ [0,1[ and S,T : C → C be two nonexpansive mappings with Fix(T ) 
= ∅.
Let 0 < μ < 2η/κ2 and 0 < γ ≤ τ , where τ = 1 − √

1 − μ(2η − μκ2). Suppose that
the solution set Ξ of HVI (8) be nonempty. For each (s, t) ∈ ]0,1[×]0,1[, let xs,t be
defined implicitly by (9). Then, for each fixed t ∈ ]0,1[, the net {xs,t } converges in
norm, as s → 0, to a point xt ∈ Fix(T ). Moreover, as t → 0, the net {xt } converges in
norm to a unique solution x∗ ∈ Ξ of the THVI (7). Moreover, for each null sequence
{sn} in ]0,1[, there exists another null sequence {tn} in ]0,1[ such that the sequence
xsn,tn → x∗ in norm as n → ∞.

In particular, if we take f = 0 and if xs,t is defined by the implicit scheme (10),
then the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is a unique solution x∗ of the variational inequality (in short, VI), which
consists in finding x∗ ∈ Ξ such that

〈
Fx∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ. (13)

Furthermore, for each null sequence {sn} in ]0,1[, there exists another null sequence
{tn} in ]0,1[, such that the sequence xsn,tn → x∗ in norm as n → ∞.

Proof We first show that {xs,t } is bounded. Indeed, take any z ∈ Fix(T ). Observe that
for all s, t ∈]0,1[

sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t − z

= [(I − sμF)T xs,t − (I − sμF)z] + stγ (f (xs,t ) − f (z))

+ s(1 − t)γ (Sxs,t − Sz) + st (γf − μF)z + s(1 − t)(γ S − μF)z.

Noticing 0 < γ ≤ τ and utilizing Lemma 2.6, we have

‖xs,t − z‖ = ‖PC[sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t ] − z‖
≤ ‖sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t − z‖
= ‖[(I − sμF)T xs,t − (I − sμF)z] + stγ (f (xs,t ) − f (z))

+ s(1 − t)γ (Sxs,t − Sz) + st (γf − μF)z + s(1 − t)(γ S − μF)z‖
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≤ ‖(I − sμF)T xs,t − (I − sμF)z‖ + stγ ‖f (xs,t ) − f (z)‖
+ s(1 − t)γ ‖Sxs,t − Sz‖ + st‖(γf − μF)z‖
+ s(1 − t)‖(γ S − μF)z‖

≤ (1 − sτ )‖xs,t − z‖ + stγρ‖xs,t − z‖ + s(1 − t)γ ‖xs,t − z‖
+ st‖(γf − μF)z‖ + s(1 − t)‖(γ S − μF)z‖

≤ [1 − sτ + stγρ + s(1 − t)γ ]‖xs,t − z‖
+ (st + s(1 − t))max{‖(γf − μF)z‖,‖(γ S − μF)z‖}

≤ (1 − stγ (1 − ρ))‖xs,t − z‖ + s max{‖(γf − μF)z‖,‖(γ S − μF)z‖}.

This implies that

‖xs,t − z‖ ≤ 1

tγ (1 − ρ)
max{‖(γf − μF)z‖,‖(γ S − μF)z‖}.

It follows that for each fixed t ∈ ]0,1[, {xs,t } is bounded and so are the nets {T xs,t },
{Sxs,t }, {f (xs,t )}, {Fxs,t } and {FT xs,t }. Since xs,t ∈ C and also T xs,t ∈ C, we get

‖xs,t − T xs,t‖ = ‖PC[sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t ] − PCT xs,t‖
≤ s‖γ (tf (xs,t ) + (1 − t)Sxs,t ) − μFT xs,t‖
→ 0 as s → 0 for each fixed t ∈ ]0,1[. (14)

We show that for each fixed t ∈ ]0,1[, the net {xs,t } is relatively norm-compact as
s → 0. Set

ys,t = sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t .

Then we have xs,t = PCys,t , and for any w ∈ Fix(T ),

xs,t − w = PCys,t − ys,t + ys,t − w

= PCys,t − ys,t + sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t − w

= PCys,t − ys,t + [(I − sμF)T xs,t − (I − sμF)w]
+ stγ (f (xs,t ) − f (w)) + s(1 − t)γ (Sxs,t − Sw) + st (γf − μF)w

+ s(1 − t)(γ S − μF)w. (15)

Since PC is the metric projection from H onto C, we have

〈PCys,t − ys,t ,PCys,t − w〉 ≤ 0.
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It follows from (15) that

‖xs,t − w‖2 = 〈PCys,t − ys,t ,PCys,t − w〉 + 〈(I − sμF)T xs,t

− (I − sμF)w,xs,t − w〉 + stγ 〈f (xs,t ) − f (w), xs,t − w〉
+ s(1 − t)γ 〈Sxs,t − Sw,xs,t − w〉 + st〈(γf − μF)w,xs,t − w〉
+ s(1 − t)〈(γ S − μF)w,xs,t − w〉

≤ [1 − sτ + stγρ + s(1 − t)γ ]‖xs,t − w‖2

+ st〈(γf − μF)w,xs,t − w〉 + s(1 − t)〈(γ S − μF)w,xs,t − w〉
≤ (1 − stγ (1 − ρ))‖xs,t − w‖2 + st〈(γf − μF)w,xs,t − w〉

+ s(1 − t)〈(γ S − μF)w,xs,t − w〉.

It turns out that

‖xs,t − w‖2 ≤ 1

tγ (1 − ρ)
〈(tγf + (1 − t)γ S − μF)w,xs,t − w〉, ∀w ∈ Fix(T ).

(16)
Assume {sn} ⊂ ]0,1[ is such that sn → 0 as n → ∞. From (16), we obtain immedi-
ately that

‖xsn,t − w‖2 ≤ 1

tγ (1 − ρ)
〈(tγf + (1 − t)γ S − μF)w,xsn,t − w〉, ∀w ∈ Fix(T ).

(17)
Since {xsn,t } is bounded, without loss of generality, we may assume that {xsn,t }
converges weakly to a point xt ∈ C. From (14), we get ‖xsn,t − T xsn,t‖ → 0. So,
Lemma 2.2 implies that xt ∈ Fix(T ). We can then substitute xt for w in (17) to get

‖xsn,t − xt‖2 ≤ 1

tγ (1 − ρ)
〈(tγf + (1 − t)γ S − μF)xt , xsn,t − xt 〉.

Consequently, the weak convergence of {xsn,t } to xt actually implies that xsn,t → xt

strongly. This has proved the relative norm-compactness of the net {xs,t } as s → 0.
Now, we return to (17) and take the limit as n → ∞ to get

‖xt − w‖2 ≤ 1

tγ (1 − ρ)
〈(tγf + (1 − t)γ S − μF)w,xt − w〉, ∀w ∈ Fix(T ).

In particular, xt solves the HVI of finding xt ∈ Fix(T ) such that

〈(tγf + (1 − t)γ S − μF)w,xt − w〉 ≥ 0, ∀w ∈ Fix(T ),

that is,

〈(μF − tγf − (1 − t)γ S)w,w − xt 〉 ≥ 0, ∀w ∈ Fix(T ).
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Let us show that the mapping (μF − tγf − (1 − t)γ S) is monotone. Indeed, we
observe that for each x, y ∈ C,

〈(μF − tγf − (1 − t)γ S)x − (μF − tγf − (1 − t)γ S)y, x − y〉
= μ〈Fx − Fy,x − y〉 − tγ 〈f (x) − f (y), x − y〉 − (1 − t)γ 〈Sx − Sy, x − y〉
≥ μη‖x − y‖2 − tγρ‖x − y‖2 − (1 − t)γ ‖x − y‖2

= [(μη − γ ) + tγ (1 − ρ)]‖x − y‖2.

Noticing the inequality μη ≥ τ (the argument can be seen in the sequel), we conclude
from 0 < γ ≤ τ and ρ ∈ [0,1[ that

(μη − γ ) + tγ (1 − ρ) ≥ (μη − τ) + tγ (1 − ρ) > 0.

This shows that the mapping (μF − tγf − (1 − t)γ S) is strongly monotone, and
hence, monotone. It is easy to see that the mapping (μF − tγf − (1 − t)γ S) is
Lipschitz continuous. It is well known that the set Fix(T ) 
= ∅ is closed and convex;
see, for example, [28]. Then, by applying the well-known Minty lemma (see [5]) for
the operator (μF − tγf − (1 − t)γ S) and the set Fix(T ), we conclude that xt solves
the Minty variational inequality of finding xt ∈ Fix(T ) such that

〈(tγf + (1 − t)γ S − μF)xt , xt − w〉 ≥ 0, ∀w ∈ Fix(T ). (18)

Notice that (18) is equivalent to the fact that xt = PFix(T )(I − μF + tγf + (1 −
t)γ S)xt . That is, xt is a unique fixed point in Fix(T ) of the contraction

PFix(T )(I − μF + tγf + (1 − t)γ S).

Obviously, this is sufficient to conclude that the entire net {xs,t } converges in norm to
xt as s → 0.

Next, we show that as t → 0, the net {xt } converges strongly to x∗ which is a
unique solution of the HVI (8).

In (18), we take any y ∈ Ξ to derive

〈(tγf + (1 − t)γ S − μF)xt , xt − y〉 ≥ 0. (19)

Note that 0 < γ ≤ τ and

μη ≥ τ ⇔ μη ≥ 1 −
√

1 − μ(2η − μκ2)

⇔
√

1 − μ(2η − μκ2) ≥ 1 − μη

⇔ 1 − 2μη + μ2κ2 ≥ 1 − 2μη + μ2η2

⇔ κ2 ≥ η2

⇔ κ ≥ η.
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It is clear that

〈(μF − γ S)x − (μF − γ S)y, x − y〉 ≥ (μη − γ )‖x − y‖2, ∀x, y ∈ C.

Hence, it follows from 0 < γ ≤ τ ≤ μη that μF − γ S is monotone. Thus, we have

〈γ Sxt − μFxt , xt − y〉 ≤ 〈γ Sy − μFy,xt − y〉 ≤ 0. (20)

It follows from (19) and (20) that

〈(γf − μF)xt , xt − y〉 ≥ 0, ∀y ∈ Ξ. (21)

Hence,

μη‖xt − y‖2 ≤ μ〈Fxt − Fy,xt − y〉
≤ 〈μFy − γf (xt ), y − xt 〉
= 〈(μF − γf )y, y − xt 〉 + γ 〈f (y) − f (xt ), y − xt 〉
≤ 〈(μF − γf )y, y − xt 〉 + γρ‖y − xt‖2.

Therefore,

‖xt − y‖2 ≤ 1

μη − γρ
〈(μF − γf )y, y − xt 〉, ∀y ∈ Ξ. (22)

In particular,

‖xt − y‖ ≤ 1

μη − γρ
‖(μF − γf )y‖, ∀t ∈ ]0,1[.

which implies that {xt } is bounded.
Next, let us show that ωw({xt }) ⊂ Ξ ; namely, if {tn} is a null sequence in ]0,1[

such that xtn → x′ weakly as n → ∞, then x′ ∈ Ξ . To see this, we use (18) to get

〈(μF − γ S)xt ,w − xt 〉 ≥ t

1 − t
〈(μF − γf )xt ,w − xt 〉, ∀w ∈ Fix(T ).

However, since μF − γ S is monotone,

〈(μF − γ S)w,w − xt 〉 ≥ 〈(μF − γ S)xt ,w − xt 〉.
Combining the last two relations yields

〈(μF − γ S)w,w − xt 〉 ≥ t

1 − t
〈(μF − γf )xt ,w − xt 〉, ∀w ∈ Fix(T ). (23)

Letting t = tn → 0 as n → ∞ in (23), we get

〈
(μF − γ S)w,w − x′〉 ≥ 0, ∀w ∈ Fix(T ). (24)
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Since μF − γ S is monotone and Lipschitz continuous, and Fix(T ) is nonempty,
closed and convex, by applying Minty lemma [5] on the set Fix(T ) and on the oper-
ator μF − γ S, the inequality (24) is equivalent to

〈
(μF − γ S)x′,w − x′〉 ≥ 0, ∀w ∈ Fix(T ).

Namely, x′ is a solution of the HVI (8); hence x′ ∈ Ξ .
We further prove that x′ = x∗, a unique solution of the THVI (7). As a matter of

fact, it follows from (22) that for x′ ∈ Ξ

‖xtn − x′‖2 ≤ 1

μη − γρ

〈
(γf − μF)x′, xtn − x′〉.

Therefore, the weak convergence to x′ of {xtn} implies that xtn → x′ in norm. Now,
we can let t = tn → 0 in (21) to get

〈
(γf − μF)x′, x′ − y

〉 ≥ 0, ∀y ∈ Ξ.

It turns out that x′ ∈ Ξ solves THVI (7). By uniqueness, we have x′ = x∗. This is
sufficient to guarantee that xt → x∗ in norm, as t → 0.

Finally, put f = 0 and let {xs,t } be defined by the implicit scheme (10). Then the
THVI (7) reduces to VI (13). Moreover, the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is the unique solution x∗ ∈ Ξ of VI (13). In addition, it is easy to see that
for each null sequence {sn} in ]0,1[, there exists another null sequence {tn} in ]0,1[,
such that the sequence xsn,tn → x∗ in norm as n → ∞. This completes the proof. �

In the above Theorem 3.1, put μ = 2, F = 1
2I and γ = τ = 1. Then the VI (8)

reduces to HVI (5) and Ξ = Ω . In this case, THVI (7) reduces to VI (25). In terms of
Theorem 3.1, for each fixed t ∈ ]0,1[, the net {xs,t } converges in norm, as s → 0, to
a point xt ∈ Fix(T ). Moreover, as t → 0, the net {xt } converges in norm to the unique
solution x∗ ∈ Ω of VI (25). Hence, for each null sequence {sn} in ]0,1[, there exists
another null sequence {tn} in ]0,1[, such that the sequence xsn,tn → x∗ in norm as
n → ∞.

Additionally, if we take f = 0, then VI (13) reduces to the following variational
inequality:

find x∗ ∈ Ω : 〈
x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω,

which is equivalent to

x∗ = PΩ(0).

Note that

x∗ = PΩ(0) ⇔ ∥∥0 − x∗∥∥ ≤ ‖0 − y‖ (∀y ∈ Ω) ⇔ ∥∥x∗∥∥ = min
y∈Ω

‖y‖.
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Thus, by Theorem 3.1, the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is the minimum-norm solution x∗ of the HVI (5). Moreover, for each null
sequence {sn} in ]0,1[, there exists another null sequence {tn} in ]0,1[, such that
the sequence xsn,tn → x∗ in norm as n → ∞. Therefore, we obtain the following
conclusion.

Corollary 3.1 [24, Theorem 3.1] Let f : C → H be a ρ-contraction with coefficient
ρ ∈ [0,1[ and S,T : C → C be two nonexpansive mappings with Fix(T ) 
= ∅. Sup-
pose that the solution set Ω of the HVI (5) be nonempty. For each (s, t) ∈ ]0,1[×
]0,1[, let xs,t be defined implicitly by (11). Then, for each fixed t ∈ ]0,1[, the net
{xs,t } converges in norm, as s → 0, to a point xt ∈ Fix(T ). Moreover, as t → 0,
the net {xt } converges in norm to a unique solution x∗ of the following variational
inequality:

find x∗ ∈ Ω : 〈
(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω. (25)

Moreover, for each null sequence {sn} in ]0,1[, there exists another null sequence
{tn} in ]0,1[, such that the sequence xsn,tn → x∗ in norm as n → ∞.

In particular, if we take f = 0 and if xs,t is defined by the implicit scheme (12),
then the iterated limit in the norm topology

s − lim
t→0

lim
s→0

xs,t

exists and is the minimum-norm solution x∗ of the HVI (5). Furthermore, for each
null sequence {sn} in ]0,1[, there exists another null sequence {tn} in ]0,1[ such that
the sequence xsn,tn → x∗ in norm as n → ∞.

Remark 3.1 Cianciaruso et al. [12] considered an implicit scheme which generates a
net {xs,t } via the implicit way (see [12, p. 118]):

xs,t = sf (xs,t ) + (1 − s)[tSxs,t + (1 − t)T xs,t ], (26)

where S and T are nonexpansive mappings from C into itself. Since in (26), the reg-
ularization is made for the nonexpansive mapping tS + (1 − t)T using the (self) con-
traction f , such a regularization depends on t and so the convergence of the scheme
(26) is very complicated. But Yao et al. [24] made the regularization for the nonex-
pansive mapping S using the (possibly nonself) contraction f , and defined xs,t as the
unique solution of the fixed-point equation:

xs,t = PC[s[tf (xs,t ) + (1 − t)Sxs,t ] + (1 − s)T xs,t ]. (27)

Thus, the convergence of the scheme (27) is very simple. Furthermore, we make the
regularization for the nonexpansive mapping S using the (possibly nonself) contrac-
tion f , and define xs,t as the unique solution of the fixed-point equation:

xs,t = PC[sγ (tf (xs,t ) + (1 − t)Sxs,t ) + (I − sμF)T xs,t ].
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Whenever γ = 1, μ = 2 and F = 1
2I , our scheme reduces to the scheme (27). Be-

yond question, our scheme is more general and its convergence is very simple as
well. Indeed, Cianciaruso et al. [12] investigated the behavior of the net {xs,t } along
the curve t = t (s) by distinguishing the cases of l being finite or infinite, where
l := lim sups→0+ t (s)/s. In our and Yao et al. investigation for the behavior of the
net {xs,t }, this idea has completely been removed. The convergence analysis for the
behavior of the net {xs,t } in [12] is complicated, and hence, our convergence analysis
is better than the convergence analysis in [12].

4 An Explicit Scheme

In this section, we introduce an explicit scheme for finding a unique solution of the
THVI (7). This scheme is indeed obtained by discretizing the implicit scheme in-
vestigated in the last section. More precisely, starting with an arbitrary initial guess
x0 ∈ C, we define a sequence {xn} iteratively by

xn+1 = PC[λnγ (αnf (xn) + (1 − αn)Sxn) + (I − λnμF)T xn], ∀n ≥ 0, (28)

where the mappings S,T ,F and the parameters μ,γ are the same as in Sect. 3, {λn}
and {αn} are two sequences in ]0,1[. Additionally, if we take f = 0, then (28) reduces
to the following iterative scheme:

xn+1 = PC[λn(1 − αn)γ Sxn + (I − λnμF)T xn], ∀n ≥ 0. (29)

In particular, whenever μ = 2, F = 1
2I and γ = τ = 1, the explicit schemes (28)

and (29) reduce to the following explicit schemes, respectively,

xn+1 = PC[λn(αnf (xn) + (1 − αn)Sxn) + (1 − λn)T xn], ∀n ≥ 0 (30)

and

xn+1 = PC[λn(1 − αn)Sxn + (1 − λn)T xn], ∀n ≥ 0. (31)

Comparing with the convergence of the implicit scheme (9), the convergence of
the explicit scheme (28) seems much more subtle.

Theorem 4.1 Let F : C → H be a κ-Lipschitzian and η-strongly monotone oper-
ator with constants κ and η > 0, respectively, f : C → H be a ρ-contraction with
coefficient ρ ∈ [0,1[ and S,T : C → C be nonexpansive mappings with Fix(T ) 
= ∅.
Let

0 < μ < 2η/κ2 and 0 < γ ≤ τ,

where τ = 1 − √
1 − μ(2η − μκ2). Assume that the solution set Ξ of the HVI (8) is

nonempty and the following conditions hold:

(i) limn→∞ λn = 0 and limn→∞ αn = 0;
(ii) limn→∞ αnλn−αn−1λn−1

αnλ2
n

= 0 and limn→∞ λn−λn−1
αnλ2

nλn−1
= 0;

(iii)
∑∞

n=0 αnλn = ∞;



504 J Optim Theory Appl (2011) 151:489–512

(iv) there are constants k̄ > 0 and θ > 0 satisfying ‖x −T x‖ ≥ k̄[d(x,Fix(T ))]θ for
each x ∈ C;

(v) limn→∞ λ
1/θ
n

αn
= 0.

We have

(a) If {xn} is the sequence generated by the scheme (28) and is bounded, then {xn}
converges in norm to the point x∗ ∈ Fix(T ) which is a unique solution of the
THVI (7).

(b) If {xn} is the sequence generated by the scheme (29) and is bounded, then {xn}
converges in norm to a unique solution x∗ of the VI of finding x∗ ∈ Ξ such that

〈
Fx∗, x − x∗〉 ≥ 0, ∀x ∈ Ξ. (32)

Proof We treat only case (a); that is, the sequence {xn} is generated by the
scheme (28). Set

un = λnγ (αnf (xn) + (1 − αn)Sxn) + (I − λnμF)T xn, ∀n ≥ 0.

Then we observe that

un − un−1

= αnλnγ [f (xn) − f (xn−1)] + λn(1 − αn)γ (Sxn − Sxn−1)

+ [(I − λnμF)T xn − (I − λnμF)T xn−1]
+ (αnλn − αn−1λn−1)γ [f (xn−1) − Sxn−1]
+ (λn − λn−1)(γ Sxn−1 − μFT xn−1). (33)

Let M > 0 be a constant such that

sup
n≥0

{γ ‖f (xn) − Sxn‖ + ‖γ Sxn − μFT xn‖} ≤ M.

It follows from (28) and (33) that

‖xn+1 − xn‖ = ‖PCun − PCun−1‖
≤ ‖un − un−1‖
≤ αnλnγ ‖f (xn) − f (xn−1)‖ + λn(1 − αn)γ ‖Sxn − Sxn−1‖

+ ‖(I − λnμF)T xn − (I − λnμF)T xn−1‖
+ |αnλn − αn−1λn−1|γ ‖f (xn−1) − Sxn−1‖
+ |λn − λn−1|‖γ Sxn−1 − μFT xn−1‖

≤ αnλnγρ‖xn − xn−1‖ + λn(1 − αn)γ ‖xn − xn−1‖ + (1 − λnτ)‖xn − xn−1‖
+ |αnλn − αn−1λn−1|M + |λn − λn−1|M

= [1 − λn(τ − γ + αnγ (1 − ρ))]‖xn − xn−1‖ + M(|αnλn − αn−1λn−1|
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+ |λn − λn−1|)
≤ [1 − (1 − ρ)γ αnλn]‖xn − xn−1‖ + M(|αnλn − αn−1λn−1| + |λn − λn−1|)
= [1 − (1 − ρ)γ αnλn]‖xn − xn−1‖

+ (1 − ρ)γ αnλn

M(|αnλn − αn−1λn−1| + |λn − λn−1|)
(1 − ρ)γ αnλn

. (34)

Hence, Conditions (ii) and (iii) allow us to apply Lemma 2.3 to (34) to get

lim
n→∞‖xn+1 − xn‖ = 0.

By (28), we get

‖xn+1 − T xn‖ = ‖PCun − PCT xn‖
≤ ‖un − T xn‖
= ‖λnγ (αnf (xn) + (1 − αn)Sxn) + (I − λnμF)T xn − T xn‖
= λn‖γ (αnf (xn) + (1 − αn)Sxn) − μFT xn‖
→ 0.

Hence, ‖xn − T xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − T xn‖ → 0. That ωw({xn}) ⊂ Fix(T )

follows from the semiclosedness of I − T by Lemma 2.2. By (34), we get

‖xn+1 − xn‖
λn

≤ [1 − (1 − ρ)γ αnλn]‖xn − xn−1‖
λn

+ M
|αnλn − αn−1λn−1| + |λn − λn−1|

λn

= [1 − (1 − ρ)γ αnλn]‖xn − xn−1‖
λn−1

+ [1 − (1 − ρ)γ αnλn]
(‖xn − xn−1‖

λn

− ‖xn − xn−1‖
λn−1

)

+ M
|αnλn − αn−1λn−1| + |λn − λn−1|

λn

≤ [1 − (1 − ρ)γ αnλn]‖xn − xn−1‖
λn−1

+ αnλn‖xn − xn−1‖ 1

αnλn

∣∣∣∣
1

λn

− 1

λn−1

∣∣∣∣

+ Mαnλn

|αnλn − αn−1λn−1| + |λn − λn−1|
αnλ2

n

. (35)

In terms of Conditions (ii) and (iii), we can apply Lemma 2.3 to (35) to conclude

lim
n→∞

‖xn+1 − xn‖
λn

= 0. (36)
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Rewriting (28) as

xn+1 = PCun − un + λnγ (αnf (xn) + (1 − αn)Sxn) + (I − λnμF)T xn.

We obtain

xn − xn+1 = un − PCun + αnλn(μF − γf )xn + λn(1 − αn)(μF − γ S)xn

+ (1 − λn)(I − T )xn + λn[(I − μF)xn − (I − μF)T xn]. (37)

Set

yn = xn − xn+1

λn(1 − αn)
, ∀n ≥ 0.

It can be easily seen from (37) that

yn = un − PCun

λn(1 − αn)
+ (μF − γ S)xn + αn

1 − αn

(μF − γf )xn

+ 1 − λn

λn(1 − αn)
(I − T )xn + 1

1 − αn

[(I − μF)xn − (I − μF)T xn].

This yields that, for each w ∈ Fix(T ) (noticing xn = PCun−1),

〈yn, xn − w〉
= 1

λn(1 − αn)
〈un − PCun,PCun−1 − w〉 + 〈(μF − γ S)xn, xn − w〉

+ αn

1 − αn

〈(μF − γf )xn, xn − w〉

+ 1 − λn

λn(1 − αn)
〈(I − T )xn − (I − T )w,xn − w〉

+ 1

1 − αn

〈(I − μF)xn − (I − μF)T xn, xn − w〉

= 1

λn(1 − αn)
〈un − PCun,PCun − w〉

+ 1

λn(1 − αn)
〈un − PCun,PCun−1 − PCun〉

+ 〈(μF − γ S)w,xn − w〉 + 〈(μF − γ S)xn − (μF − γ S)w,xn − w〉
+ 1 − λn

λn(1 − αn)
〈(I − T )xn − (I − T )w,xn − w〉

+ αn

1 − αn

〈(μF − γf )xn, xn − w〉

+ 1

1 − αn

〈(I − μF)xn − (I − μF)T xn, xn − w〉. (38)
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In (38), the first term is nonnegative due to Lemma 2.1, and the fourth and fifth terms
are also nonnegative due to the monotonicity of μF − γ S and I − T . We, therefore,
derive from (38) that (noticing again xn+1 = PCun)

〈yn, xn − w〉
≥ 1

λn(1 − αn)
〈un − PCun,PCun−1 − PCun〉 + 〈(μF − γ S)w,xn − w〉

+ αn

1 − αn

〈(μF − γf )xn, xn − w〉

+ 1

1 − αn

〈(I − μF)xn − (I − μF)T xn, xn − w〉
= 〈un − PCun, yn〉 + 〈(μF − γ S)w,xn − w〉

+ αn

1 − αn

〈(μF − γf )xn, xn − w〉

+ 1

1 − αn

〈(I − μF)xn − (I − μF)T xn, xn − w〉. (39)

Note that ‖xn − T xn‖ → 0 implies ‖(I − μF)xn − (I − μF)T xn‖ → 0. Also, since
yn → 0 by (36), αn → 0 and {xn} is bounded by assumption which implies that {un}
is bounded, we obtain from (39) that

lim sup
n→∞

〈(μF − γ S)w,xn − w〉 ≤ 0, ∀w ∈ Fix(T ). (40)

This suffices to guarantee that ωw({xn}) ⊂ Ξ ; namely, every weak limit point of {xn}
solves the HVI (8). As a matter of fact, if xnj

⇀ x̃ ∈ ωw({xn}) for some subsequence
{xnj

} of {xn}, then we obtain from (40) that

〈(μF − γ S)w, x̃ − w〉 ≤ lim sup
n→∞

〈(μF − γ S)w,xn − w〉 ≤ 0, ∀w ∈ Fix(T ),

that is,

〈(μF − γ S)w,w − x̃〉 ≥ 0, ∀w ∈ Fix(T ).

Since μF − γ S is monotone and Lipschitz continuous, and Fix(T ) 
= ∅ is closed and
convex, by the Minty lemma [5] the last inequality is equivalent to the inequality (8).
Thus, we get x̃ ∈ Ξ .

Now, we take a subsequence {xnj
} of {xn} satisfying

lim sup
n→∞

〈
(μF − γf )x∗, xn − x∗〉 = lim

j→∞
〈
(μF − γf )x∗, xnj

− x∗〉.

Without loss of generality, we may further assume that xnj
→ x̃ weakly; then x̃ ∈ Ξ

as we just proved. Since x∗ is a solution of the THVI (7), we get

lim sup
n→∞

〈
(μF − γf )x∗, xn − x∗〉 = 〈

(μF − γf )x∗, x̃ − x∗〉 ≥ 0. (41)
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From (28), it follows that (noticing that xn+1 = PCun and 0 < γ ≤ τ )

∥∥xn+1 − x∗∥∥2 = 〈
un − x∗, xn+1 − x∗〉 + 〈

PCun − un,PCun − x∗〉

≤ 〈
un − x∗, xn+1 − x∗〉

= 〈
(I − λnμF)T xn − (I − λnμF)x∗, xn+1 − x∗〉

+ αnλnγ
〈
f (xn) − f

(
x∗), xn+1 − x∗〉

+ λn(1 − αn)γ
〈
Sxn − Sx∗, xn+1 − x∗〉

+ αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉

≤ [1 − λnτ + αnλnγρ + λn(1 − αn)γ ]∥∥xn − x∗∥∥∥∥xn+1 − x∗∥∥

+ αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉

≤ [1 − αnλnγ (1 − ρ)]∥∥xn − x∗∥∥∥∥xn+1 − x∗∥∥

+ αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉

≤ [1 − αnλnγ (1 − ρ)]1

2

(∥∥xn − x∗∥∥2 + ∥∥xn+1 − x∗∥∥2)

+ αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉.

It turns out that

∥∥xn+1 − x∗∥∥2 ≤ 1 − αnλnγ (1 − ρ)

1 + αnλnγ (1 − ρ)

∥∥xn − x∗∥∥2

+ 2

1 + αnλnγ (1 − ρ)

[
αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉]

≤ [1 − αnλnγ (1 − ρ)]∥∥xn − x∗∥∥2

+ 2

1 + αnλnγ (1 − ρ)

[
αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉]. (42)

However, since x∗ ∈ Ξ and by Assumption (iv), we obtain that

〈
(γ S − μF)x∗, xn+1 − x∗〉

= 〈
(γ S − μF)x∗, xn+1 − PFix(T )xn+1

〉 + 〈
(γ S − μF)x∗,PFix(T )xn+1 − x∗〉
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≤ 〈
(γ S − μF)x∗, xn+1 − PFix(T )xn+1

〉

≤ ∥∥(γ S − μF)x∗∥∥d(xn+1,Fix(T ))

≤ ∥∥(γ S − μF)x∗∥∥
(

1

k̄
‖xn+1 − T xn+1‖

)1/θ

. (43)

On the other hand, we also have

‖xn+1 − T xn+1‖ ≤ ‖xn+1 − T xn‖ + ‖T xn − T xn+1‖
≤ ‖xn − xn+1‖ + λn‖γ (αnf (xn) + (1 − αn)Sxn) − μFT xn‖
= ‖xn − xn+1‖ + λn‖γ αn(f (xn) − Sxn) + γ Sxn − μFT xn‖
≤ ‖xn − xn+1‖ + Mλn. (44)

Hence, for a big enough constant k̄1 > 0, we have
〈
(γ S − μF)x∗, xn+1 − x∗〉 ≤ k̄1(λn + ‖xn − xn+1‖)1/θ

≤ k̄1λ
1/θ
n

(
1 + ‖xn − xn+1‖

λn

)1/θ

. (45)

Combining (42)–(45), we get

∥∥xn+1 − x∗∥∥2 ≤ [1 − αnλnγ (1 − ρ)]∥∥xn − x∗∥∥2

+ 2

1 + αnλnγ (1 − ρ)

[
αnλn

〈
(γf − μF)x∗, xn+1 − x∗〉

+ λn(1 − αn)
〈
(γ S − μF)x∗, xn+1 − x∗〉]

≤ [1 − αnλnγ (1 − ρ)]∥∥xn − x∗∥∥2

+ 2αnλn

1 + αnλnγ (1 − ρ)

[〈
(γf − μF)x∗, xn+1 − x∗〉

+ k̄1λ
1/θ
n

αn

(
1 + ‖xn − xn+1‖

λn

)1/θ]

= (1 − γn)
∥∥xn − x∗∥∥2 + δn, (46)

where

γn = αnλnγ (1 − ρ)

and

δn = 2αnλn

1 + αnλnγ (1 − ρ)

×
[〈

(γf − μF)x∗, xn+1 − x∗〉 + k̄1λ
1/θ
n

αn

(
1 + ‖xn − xn+1‖

λn

)1/θ]
.
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Now Condition (iii) implies that
∑∞

n=0 γn = ∞, and (v) and (41) imply that

lim sup
n→∞

δn/γn ≤ 0.

Therefore, we can apply Lemma 2.3 to (46) to conclude that xn → x∗. The proof
of part (a) is complete. It is easy to see that part (b) now becomes a straightforward
consequence of part (a) since, if f = 0, THVI (7) reduces to VI (32). This completes
the proof. �

In the above Theorem 4.1, put μ = 2, F = 1
2I and γ = τ = 1. Then the HVI (8)

reduces to the HVI (5) and Ξ = Ω . In this case, the THVI (7) reduces to VI (47). In
terms of Theorem 4.1 (a), {xn} converges in norm to the point x∗ ∈ Fix(T ) which is
a unique solution of VI (47).

Additionally, if we take f = 0, then VI (32) reduces to the following variational
inequality:

find x∗ ∈ Ω : 〈
x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω,

which is equivalent to

x∗ = PΩ(0).

Note that

x∗ = PΩ(0) ⇔ ∥∥0 − x∗∥∥ ≤ ‖0 − y‖ (∀y ∈ Ω) ⇔ ∥∥x∗∥∥ = min
y∈Ω

‖y‖.

Thus, by Theorem 4.1 (b), {xn} converges in norm to the minimum-norm solution of
the HVI (5). Therefore, we get the following conclusion.

Corollary 4.1 [24, Theorem 4.1] Let f : C → H be a ρ-contraction with coefficient
ρ ∈ [0,1[ and S,T : C → C is two nonexpansive mappings with Fix(T ) 
= ∅. Assume
that the solution set Ω of the HVI (5) be nonempty and that the following conditions
hold:

(i) limn→∞ λn = 0 and limn→∞ αn = 0;
(ii) limn→∞ αnλn−αn−1λn−1

αnλ2
n

= 0 and limn→∞ λn−λn−1
αnλ2

nλn−1
= 0;

(iii)
∑∞

n=0 αnλn = ∞;
(iv) there are constants k̄ > 0 and θ > 0 satisfying ‖x −T x‖ ≥ k̄[d(x,Fix(T ))]θ for

each x ∈ C;

(v) limn→∞ λ
1/θ
n

αn
= 0.

We have

(a) If {xn} is the sequence generated by the scheme (30) and is bounded, then {xn}
converges in norm to the point x∗ ∈ Fix(T ) which is a unique solution of the
variational inequality:

find x∗ ∈ Ω : 〈
(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω. (47)
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(b) If {xn} is the sequence generated by the scheme (31) and is bounded, then {xn}
converges in norm to a minimum-norm solution of the HVI (5).

Remark 4.1 As pointed out in [24], whenever the sequences {αn} and {λn} are chosen
as

αn = 1

(n + 1)α
and λn = 1

(n + 1)λ
,

Conditions (i)–(iii) of Theorem 4.1 are satisfied provided 0 < α,λ < 1 and
α + 2λ ≤ 1. Also, Condition (v) is satisfied provided λ/α > θ .

5 Concluding Remarks

We considered a variational inequality with variational inequality constraint over a set
of fixed points of a nonexpansive mapping, called triple hierarchical variational in-
equality (THVI). An example of THVI is also given. We combined the regularization
method, the hybrid steepest-descent method, and the projection method to propose
an implicit scheme that generates a net in an implicit way, and studied its strong con-
vergence to a unique solution of THVI. We also proposed an explicit scheme that
generates a sequence via an iterative algorithm and proved that this sequence con-
verges strongly to a unique solution of THVI.
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