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This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor
volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation
analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autor-
egressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable,
ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute
percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that
mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue,
but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock
market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity
and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and
relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively
with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.

1. Introduction
Overcrowding in emergency departments (EDs) reflects dys-
function in healthcare systems [1]. Contributing factors in-
cluding mismatch between ED capacity and various input,
throughput, and output factors as well as insufficient ca-
pacity [2]. During the 12-year period from 1995 to 2006,
annual ED visits in Taiwan increased 40%, from 4,664,209
to 6,569,247 per year [3]. Therefore, higher than expected
admissions of critical patients to inpatient units is an impor-
tant hospital administration issue [4].

Accurately predicting patient admissions can facilitate
the timely planning of staff deployment and resource alloca-
tion in a department and in the entire hospital [5]. Although

most medical organizations attempt to predict hourly or
daily patient admissions, no studies have reported monthly
forecasts of ED revenue, and very few have reported monthly
forecasts of ED visitor volume. Moreover, no studies have
simultaneously evaluated the possible associations of meteo-
rological, clinical, and economic factors with ED revenue and
visitor volume. Additionally, although the annual budget is a
major consideration in hospital management, excellent care
quality has the highest priority. Since ED medical services can
easily incur large budget deficits, accurate revenue prediction
provides the data needed to adjust budgets accordingly so
that health care providers can allocate sufficient resources
in advance. This study therefore analyzed the effects of
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meteorological, clinical, and economic factors on monthly
ED revenue and visitor volume.

2. Materials and Methods

2.1. Study Design and Setting. This retrospective study was
performed at the ED of a regional teaching hospital with 226
acute-care beds in Taiwan (22◦N 120◦E). Monthly data were
analyzed for the period January 1, 2005, through September
30, 2009. A four-year (2005–2008) data set was used to con-
struct the forecasting model, while the data for the first 9
months of the 5th year (2009) was used to test the forecasting
capability of the model.

The ED visits were classified as trauma, nontrauma, or
pediatric. All pediatric trauma patients and gynecology-ob-
stetric trauma patients were initially treated by the trauma
division. Nontrauma patients who were younger and older
than 18 years were further classified as pediatric and nonpe-
diatric nontrauma patients, respectively.

Because Kaohsiung city is located in a monsoon region
and has a subtropical climate, dramatic monthly changes in
temperature, humidity, and rainfall are common. Average
monthly temperature ranges from 18.6 to 28.7 degrees Celsi-
us, and average monthly humidity ranges from 60% to 81%.
According to 1971–2000 data, average annual rainfall is ap-
proximately 1,785 mm. Although the hospital information
system (HIS) had been implemented at the study facility
since 2002, data collection was limited to the period from
January, 2005 to September, 2009, due to the 2003 outbreak
of severe acute respiratory syndrome.

2.2. Data Collection and Analysis. Potential predictors were
selected according to the literature, local observation, and
availability of data. Revenue data were provided by the hospi-
tal accounting department. Meteorological, clinical, and eco-
nomic data were obtained from the Taiwan Central Weather
Bureau (TCWB), Hospital Information System (HIS), and
Taiwan Stock Exchange, respectively [6, 7].

According to the Financial Supervisory Commission, pri-
vate investor transactions comprised more than 80% of all
stock market investments during 2005–2009 [8]. The total
number of investor accounts reached 15,143,707 in Septem-
ber, 2009, which represents 82.42% of the Taiwan adult
population (18,374,613) [8]. Therefore fluctuation in the
stock market index affected the economic status of most
adults. The final model included the following factors: mean
maximum temperature, mean minimum temperature, rela-
tive humidity, accumulated rainfall, and fluctuation in the
stock market index. These databases are registered to the Tai-
wan Data Protection Authority for medical and research pur-
poses. Given its design, aggregating data analysis with no in-
dividual identifiers, this study was exempted from the indi-
vidual informed consent requirement.

Spearman correlation analysis was used to test indepen-
dent variables for correlations with case number. Moreover,
given the potential lagged effect of the meteorological, clini-
cal, and economic factors on ED revenue and visitor volume,
cross-correlation analysis was also performed with relevant

time lag values. Methods developed by Box and Jenkins [9]
were used to build an autoregressive integrated moving aver-
age (ARIMA) time series model, which is designed to exam-
ine sequentially lagged relationships for relationships that
may not be apparent in data collected periodically. The gen-
eral form of the ARIMA model is

D1zt = F1zt−1 + · · · + Fpzt−p + at − q1at−1 − · · · − qqat−q,
(1)

where D1zt = differenced series, that is, zt − zt−1, zt =
set of possible observations of the time-sequenced random
variable, at = random shock term at time t, F1 · · ·FP =
autoregressive parameters of order p, q1 . . . qp = moving
average parameters of order q.

The series was subjected to Box-Cox transformation [10].
The transformed series was then differentiated at the nonsea-
sonal level and mean corrected to induce stationarity. Sample
autocorrelation and partial autocorrelation functions were
used to identify the ARIMA model of the appropriate order.
Model parameters were estimated by maximum likelihood
method. Diagnostic tests, including residual analysis and the
mean absolute percentage of error (MAPE), were performed
to compare goodness-of-fit among ARIMA models. The final
model obtained after several iterations of the identification,
estimation, and checking processes met the conventional
criteria for model adequacy.

To reflect changes in real dollar value, ED revenue data
were adjusted by the consumer price index (CPI) for each
year of 2005–2009 (95.16, 95.72, 97.44, 100.88, and 100.00,
resp.). The ED revenues were then converted from Taiwan
dollars to US dollars at an exchange rate of 30.5 : 1, which was
the average exchange rate during 2005–2009. All tests were
two-sided, and P values less than 0.05 were considered sta-
tistically significant. Statistical analysis was performed with
SPSS software for Windows, version 15 (SPSS, Inc, Chicago,
Ill, USA).

3. Results

After ED revenue adjustment and natural log processing,
the series revealed good stability (Figure 1). Generally, the
original series of trauma, nontrauma, and pediatric visits
were stable (Figure 2). Although several peaks were noted
in the three divisions and meteorological aspects, spectral
analysis revealed no seasonal trends. The annual numbers of
ED visitors from 2005 to 2008 were 22988, 20956, 22736, and
23416, respectively.

Table 1 summarizes the variables for meteorological,
clinical, and economic conditions in Taiwan during the study
period. Mean maximum temperature ranged from 27.85◦C
to 35.74◦C, and mean minimum temperature ranged from
8.90◦C to 25.22◦C. Monthly relative humidity was 62.96%–
91.18%, and monthly rainfall was 18.73 mm to 568.93 mm
with maximum rainfalls observed in June and September.
Additionally, the largest fluctuation in the stock index oc-
curred in 2008.

The Spearman correlation analyses suggested that mean
maximum temperature, relative humidity, accumulated rain-
fall, and stock index fluctuation were all positively correlated
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Figure 1: Original series and transformed series of emergency de-
partment (ED) revenue data for 2005 to 2008.

Table 1: Summary of monthly related variables from January, 2005-
December, 2008.

Variable Mean Std. Dev. Min. Max. F∗

Mean maximum
temperature

31.04 10.21 27.85 35.74 9.73

Mean minimum
temperature

18.44 4.53 8.90 25.22 16.52

Relative humidity 78.09 12.14 62.96 91.18 41.60

Accumulated rainfall 353.23 108.06 18.73 568.93 10.69

Stock index
fluctuation

678.35 122.90 280.33 1020.44 30.32

∗
A P value <0.05 was considered statistically significant.

while mean minimum temperature was negatively correlated
with monthly ED revenue, number of nontrauma visits,
and number of pediatric visits, with lag time ranging from
zero to two months (Table 2). Mean minimum temperature,
accumulated rainfall, and stock index fluctuation were all
positively correlated whereas mean maximum temperature
and relative humidity correlated negatively with number of
monthly trauma visits, with the lag time ranging from zero
to two months.

Table 3 shows the parameter estimates for the optimum
ARIMA mode (1, 0, 0) for the series of monthly ED revenue.
The autocorrelation and partial autocorrelation functions of
the residuals showed a good data fit (data not shown). The
residual plots showed small variations around the zero mean.
In no case did the magnitude of these residuals exceed double
the standard deviation. As a set, autocorrelations for re-
siduals did not significantly differ from zero, and variance
was consistent, which confirmed the adequacy of the model
(Ljung-Box statistic = 22.04; P = 0.483). The analysis
showed that mean maximum temperature, relative humidity,
accumulated rainfall, nontrauma visits, and trauma visits
were significantly and positively related to ED revenue, but
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Figure 2: Original series data for trauma, non-trauma, and pediat-
ric visits from 2005 to 2008.

mean minimum temperature was significantly and negatively
related to ED revenue (P < 0.05).

Table 4 shows the parameter estimates for the optimal
ARIMA modes for the series of trauma visits, nontrauma
visits, and pediatric visits. The autocorrelation and partial
autocorrelation functions of the residuals also showed good
data fit (data not shown). Mean minimum temperature and
stock index fluctuation were significantly and positively asso-
ciated with number of trauma visits (P < 0.05). Moreover,
mean maximum temperature, relative humidity, and fluctu-
ation in stock index were significantly and positively asso-
ciated with number of nontrauma visits (P < 0.05). Addi-
tionally, mean maximum temperature and relative humidity
were significantly and positively associated with number of
pediatric visits, but mean minimum temperature was signif-
icantly and negatively associated with number of pediatric
visits (P < 0.05).

Table 5 shows that the performance of the ARIMA during
validation phase was good to excellent. The validation phase
data in Table 5 confirm the good forecasting capability of the
ARIMA model. The model obtained a MAPE of 22.61% for
ED revenue, 12.39% for trauma visits, 19.59% for nontrau-
ma visits, and 29.08% for pediatric visits.

4. Discussion

This study is the first to apply the ARIMA model for simul-
taneous time series analysis of three aspects of monthly ED
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Table 3: Parameters from autoregressive integrated moving average
(ARIMA) model (1, 0, 0) for ED revenue (January, 2005–December,
2008).

Parameters Coefficient T P value

Mean maximum temperature 0.1176 2.77 0.009

Mean minimum temperature −0.0736 −5.29 <0.001

Relative humidity 0.0672 4.33 <0.001

Accumulated rainfall 0.0008 4.18 <0.001

Nontrauma visits 0.0040 3.38 0.002

Trauma visits 0.0098 5.38 <0.001

Pediatric visits −0.0004 −0.78 0.442

Stock index fluctuation −0.0002 −0.74 0.463

Table 4: Parameters from autoregressive integrated moving average
(ARIMA) model for trauma, nontrauma, and pediatric visits (Jan-
uary, 2005–December, 2008).

Parameters Coefficient T P value

ARIMA model (1,0,2) for forecasting trauma visits

Mean maximum temperature −6.2110 −1.545 0.131

Mean minimum temperature 6.8860 4.383 <0.001

Relative humidity −0.5100 −0.360 0.721

Accumulated rainfall 0.0210 1.479 0.147

Stock index fluctuation 0.0990 5.026 <0.001

ARIMA model (1,0,2) for forecasting nontraumatic visits

Mean maximum temperature 0.1380 5.211 <0.001

Mean minimum temperature −0.0120 −0.835 0.409

Relative humidity 0.0280 2.518 0.016

Accumulated rainfall 0.0001 0.281 0.780

Stock index fluctuation 0.0010 3.351 0.002

ARIMA model (0, 2, 1) for forecasting pediatric visits

Mean maximum temperature 0.1320 3.449 <0.001

Mean minimum temperature −0.0065 −4.444 <0.001

Relative humidity 0.0040 2.552 0.015

Accumulated rainfall 0.0001 0.921 0.363

Stock index fluctuation 0.0001 1.606 0.116

revenue and patient visit. This study demonstrates that mete-
orological, clinical, and economic conditions affect ED rev-
enue and patient visits. The model can be used for planning
ED staff deployments and for resource allocation. It can also
forecast and resolve inadequate capacity in EDs.

Previous studies of ED revenue only compared difference
between weekdays and weekends [11]. Understanding the
deficit from ED operation, the hospital manager can arrange
appropriate budget in advance. This study found that ED
revenue correlated positively with mean maximum tem-
perature, relative humidity, accumulated rainfall, number of
trauma, and nontrauma visits, but negatively mean mini-
mum temperature. Although rainfall was significantly as-
sociated with revenue, it was unassociated with volume of
trauma, nontrauma, and pediatric patients. A possible expla-
nation is that the severity of diseases treated at EDs increases
during rainy season [12]. The number of health insurance

claims during the study period was not significantly related
to patient volume.

Interestingly, stock index fluctuation correlated positively
with overall patient volume (trauma and nontrauma), which
correlated positively with monthly ED revenue. The lack of
correlation between stock index fluctuation and ED revenue
may be due to the reduced effect of ED revenue when simul-
taneously considering multiple factors in the forecasting
model.

Although many recent studies have evaluated the effect of
climate change on human health, few studies have considered
multiple factors associated with human health [12–14]. The
effects of meteorological conditions on specific diseases have
already been demonstrated [15]. Therefore, this study eval-
uated the effect of meteorological conditions on all ED pa-
tients treated in one facility. In contrast with previous re-
ports, mean minimum temperature was associated with
number of trauma patients, and mean maximum tempera-
ture was associated with number of nontrauma patients [15,
16]. The effects of weather changes on residents in different
regions may explain the difference [17]. Residents of tropical
climates who are accustomed to warm temperatures may
have low tolerance for cold temperatures. Thus, cold weather
may cause people in tropical climates to hurry and drive less
carefully. Driving at high speeds is another major cause of
traffic accidents in Taiwan, especially those involving motor-
cycles. Hence, trauma-causing accidents may increase during
cold weather in Taiwan. Wearing thin clothes on days with
high temperatures may also contribute to the risk of motor-
cycle injuries [18].

Although low temperature was associated with severe
medical and pediatric disease, maximum temperatures also
correlated with the incidence of Dengue fever, pediatric fever,
and gastroenteritis [19, 20]. Other studies have reported that
relative humidity correlates with pulmonary disease out-
breaks, acute upper respiratory infection, and respiratory
syncytial virus (RSV) infection [14, 21, 22]. Therefore, mean
maximum temperature and relative humidity correlate with
patient visits in both nontrauma and pediatric divisions. Rel-
ative humidity may also explain regional differences [23].

Time series analysis with ARIMA model is an accurate
method of long-term forecasting [24–26]. This study dem-
onstrated good-to-excellent accuracy in forecasting monthly
ED revenue, nontrauma visits, trauma visits, and pediatric
visits. Since most clinics and hospital out-patient depart-
ments are closed during the traditional Chinese new year pe-
riod, ED visits tend to increase in most medical institutions.
Notably, Chinese new year fell in February during 2005∼
2008, but it fell in January in 2009. When forecasting accu-
racy was considered only for February to September, 2009, a
dramatic improvement was observed. In forecasts of trauma
visits, the best MAPE was 10.16%, and the worst MAPE was
13.11%. In forecasts of nontrauma visits, the best MAPE
was 13.71%, and the worst MAPE was 21.46%. In forecasts
of pediatric visits, the best MAPE was 5.73% (for the Feb-
ruary, 2009 forecast), and the worst MAPE was 54.24%
(for the September, 2009 forecast). Except for September,
2009, all forecasts for pediatric visits during February∼Au-
gust, 2009 had MAPEs of 5.73% ∼21.18%. The September
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Table 5: Prediction results of autoregressive integrated moving average (ARIMA) models in 2009.

Date
ED revenue Traumatic visit Nontraumatic visit Pediatric visit

True Value Forecasted value True value Forecasted value True value Forecasted value True value Forecasted value

Jan-09 4,767,559 3,676,314 584 472 1,415 826 1,204 551

Feb-09 3,885,639 4,547,216 465 498 1,162 1,177 630 699

Mar-09 3,419,070 3,529,467 597 535 1,090 857 595 719

Apr-09 3,897,391 3,313,426 582 507 945 910 546 740

May-09 3,804,037 2,158,604 572 502 962 862 613 712

Jun-09 3,336,949 5,126,700 570 539 852 946 491 657

Jul-09 3,642,391 5,576,091 599 575 903 845 476 560

Aug-09 4,703,707 5,731,772 692 590 1,179 917 802 548

Sep-09 5,058,538 5,787,666 675 625 1,366 1,047 1,324 787

MAPE 22.61% (14.38% ∼29.73%) 12.39% (10.16% ∼19.12%) 19.59% (13.71% ∼41.61%) 29.08% (5.73% ∼54.24%)

MAPE: mean absolute percentage of error.

deviation resulted mainly from an H1N1 influenza outbreak
in teenagers.

The main objective of business forecasting is appropri-
ately adjusting staffing to business activity, which in this case
was ED activity. The forecasts indicated that one nurse, one
emergency physician, and computer equipment should have
been added during December, 2009, to February, 2010. Aver-
age waiting time decreased from 21 minutes to 13 minutes,
and average length of stay in the triage categories of life-
threatening and emergent decreased from 124 minutes to 117
minutes. The number of patients referred to other hospitals
decreased from 23 in December, 2009, to 9 in February, 2010;
during the same period, the number of patients treated
monthly increased from 2,483 to 3,207, and the percentages
of monthly admissions increased from 37.13% to 48.09%.
However, in the one study in the current literature that
has performed a numerical analysis to optimize staffing, an
18.5% decrease in patients who “left without treatment” was
used as a surrogate marker [27].

One limitation of this study is that the patients were
treated in a regional teaching hospital in Taiwan, where al-
most all citizens have national health insurance with unre-
stricted access to emergency care. This should be considered
when generalizing the findings of the study to other hospitals.
Second, this study did not explore socioeconomic indicators
other than stock index fluctuation. Third, patient and staff
satisfaction was not included in the assessment of the effect
of adjustment results.

5. Conclusions

Emergency departments must continue operating even when
insufficient capacity causes overcrowding. Meteorological,
clinical, and economic factors are associated with ED revenue
and visitor volume. The good long-term forecasting capa-
bility of the model proposed in this study can help EDs to
optimize departmental resources and manpower. Emergency
services can also be enhanced by matching-associated input
and throughput factors.
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