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ABSTRACT
Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI) has been widely used in the diagnosis of lesions.
Many contrast agents with various chemical and pharmacokinetic properties have been developed for clinical
use. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) after the contrast agent administration
depend on many factors, e.g. category and injected dosage of contrast agents, field strength of magnetic
resonance (MR) scanner, slew rate of gradient, type of radiofrequency coil, reconstruction algorithm, pulse
sequences, and so on. Gadovist is a newly developed contrast agent with high formulation of 1.0M. It has
been used in MR angiography and perfusion studies. The aim of this study is to investigate the optimal
concentrations of Gadovist in MR T1-weighted (T1W) images from phantom study and computer simulation.
A phantom made of 21 test tubes with various concentrations of Gadovist (0–160 mM) was investigated. All
the studies were performed on a 1.5-T clinical whole-body scanner. Four T1W pulse sequences, including
two-dimensional spoiled gradient echo (2DSPGR), three-dimensional fast spoiled gradient echo (3DFSPGR),
conventional spin echo (CSE), and inversion recovery (IR) were employed to produce T1W images. The CNR
values were calculated from regions of interest (ROIs) of all test tubes and the optimal concentration for
each pulse sequence was determined. The T1 and T2 values of the phantom were also measured to obtain
the relaxivities (r1 and r2). Afterward, the optimal concentration for each pulse sequence could be obtained

from computer simulation by using the r1 and r2 values. The results showed that the measured optimal
concentrations for 2DSPGR, 3DFSPGR, CSE and IR are 10, 20, 2.5, and 2.5mM, respectively. The r1

and r2 values of the Gadovist phantom are 4.1 and 5.7mM−1s−1, respectively. The optimal concentrations
obtained from computer simulation are 13.5, 22.8, 2.0, and 2.7mM for 2DSPGR, 3DFSPGR, CSE, and IR,
respectively. The optimal concentrations obtained from computer simulation and phantom study are in good
agreement.
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INTRODUCTION

Magnetic resonance imaging (MRI) has been develop-
ing rapidly and is a very important modality used in
clinics for lesion detection and treatment follow-up.1–10

MRI can demonstrate high contrast between soft tis-
sues. In addition, it is noninvasive and produces no
ionizing radiation. Because of the administration of
contrast agents, the contrast of MRI improves signif-
icantly. Contrast-enhanced MRI (CE-MRI) has been
widely used in angiography and perfusion.11–20 Gd-
DTPA (Magnevist, Schering AG, Berlin, Germany) is
the first contrast agent approved by US Food and Drug
Administration (FDA) in 1988. It is a nonspecific extra-
cellular contrast agent. Nowadays, Gd-DTPA is the
most commonly used contrast agent in the world.21–25

Novel contrast agents have emerged for different pur-
poses since 1988. Gadovist (Gadobutrol, Schering AG,
Berlin, Germany) is a contrast agent, which has recently
become clinically available. It is a neutral, hydrophilic,
and macrocyclic contrast agent. Because of its low
osmolality and viscosity in comparison to Gd-DTPA,
it has been supplied at 1.0-M formulation, which is
higher than that of Gd-DTPA (0.5M). Consequently,
Gadovist can be injected with smaller volume. It is also
an extracellular contrast agent and excreted from kid-
neys readily.26–30

Both Gd-DTPA and Gadovist are paramagnetic con-
trast agents that can shorten both longitudinal (T1) and
transverse (T2) relaxation times. The signal-to-noise
ratio (SNR) and contrast-to-noise ratio (CNR) will be
changed as well. The reduction of both relaxation times
depends on the concentrations of the contrast agents.
The relationship between the relaxation times and the
concentration of a contrast agent is shown as follows31:

1/T1 = 1/T10 + r1[c] (1a)

1/T2 = 1/T20 + r2[c], (1b)

where r1 is defined as the longitudinal relaxivity, r2 is
the transverse relaxivity, T1 is the longitudinal relax-
ation time, T2 is the transverse relaxation time of a
phantom or tissue with concentration [c] of the con-
trast agent, T10 is the longitudinal relaxation time, and
T20 is the transverse relaxation time of a phantom or
tissue in absence of any contrast agent.

Equation (1) shows the higher the concentration
of the contrast agent, the shorter the relaxation time
of protons. The SNR and CNR values depend not
only on T1 and T2 values of a phantom or tissue but
also on the choice of a pulse sequence and scanning
parameters. Stalder measured the optimal concentra-
tion of Gadovist using a fast low angle shot (FLASH)

pulse sequence.32 In our previous studies, the optimal
concentrations of Gd-DTPA and Gd-DTPA-BMA in
several T1W images were measured.33 In this study,
a phantom made of Gadovist with various concen-
trations was investigated by using four T1W pulse
sequences, including two-dimensional spoiled gradient
echo (2DSPGR), three-dimensional fast spoiled gradi-
ent echo (3DFSPGR), conventional spin echo (CSE)
and inversion recovery (IR). The 2D and 3D SPGR
pulse sequences have been widely used in MR angiog-
raphy and CE-MRI.12,14,21,23 Although CSE and IR
take longer scanning time, because they possess less
susceptibility sensitivity, they still can be used in some
area, for example, the detection of multiple sclerosis and
brain metastasis, etc.9,13,20 Different scanning param-
eters and pulse sequences will result in different opti-
mized concentrations. The optimal concentrations were
defined to achieve the maximum CNR for each pulse
sequence and were first obtained from the phantom
measurements. Then, the T1 and T2 values of the phan-
tom with various concentrations of Gadovist were evalu-
ated to obtain the relaxivity values (r1 and r2). Finally,
the optimal concentrations were obtained from com-
puter simulation and were compared with those values
obtained from the phantom study mentioned above.

MATERIALS AND METHODS

All the MRI studies were performed on a whole-body
1.5-T MR scanner (GE Signa HDxt, GE Medical Sys-
tems, Milwaukee, WI, USA) with a quadrature head
coil.

Optimal Concentration
Measurements

Twenty one 15-ml test tubes containing 10ml distilled
water doped with different concentrations (0, 0.1, 0.2,
0.4, 0.8, 1.25, 2.5, 5, 10, 15, 20, 25, 30, 35, 40, 60, 80, 100,
120, 140, 160mM) of Gadovist were prepared. These
test tubes were fixed in a polystyrene holder and then
placed inside the head coil. After the three-plane local-
izer scan, the phantom was scanned by a series of pulse
sequences. Four pulse sequences, including 2DSPGR,
3DFSPGR, CSE, and IR, were used for scanning. The
parameters of these pulse sequences used in this study
are listed in Table 1.

All the MR images were transferred to an Advan-
tage Window workstation for regions of interest (ROIs)
measurements. Once the ROI values of these 21 test
tubes and one background outside the phantom were
obtained, the SNR and CNR values of the test tubes
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Table 1. Parameters of Various Pulse Sequences Used for Optimal Concentration Measurements.

Pulse Sequences FA (◦) TR/TE/TI (ms) Matrix BW (kHz) THK (mm) NEX FOV (cm2)

2DSPGR 50 13/4.5/null 256 × 160 31 5 4 24 × 24
3DFSPGR 35 6.1/1.9/null 256 × 224 31.3 1.4 1 24 × 24
CSE 90 350/14/null 256 × 192 15.6 5.0 1 24 × 24
IR 180–90 400/30/200 256 × 160 31.3 5 1 24 × 24

with various Gadovist concentrations were calculated
by Eqs. (2) and (3), respectively.

SNR(c) = S(c)/σBGD (2)

CNR(c) = SNR(c) − SNR(0), (3)

where S(c) is the MR signal intensity of a test tube with
the concentration [c] of Gadovist, SNR(0) is the SNR of
distilled water only and σBGD is the standard deviation
of the background signal. The optimal concentration
was determined by the maximum value of CNR.

T1 and T2 Measurements

The same phantom as mentioned above was used for
T1 and T2 measurement. The parameters for T1 mea-
surement were listed as follows: field of view (FOV) =
24 × 24 cm2, matrix size = 256 × 192, slice thick-
ness = 5 mm, Bandwidth (BW) = 15.6 kHz, number
of excitation (NEX) = 1, TE = 14ms and TR = 200–
3000ms with 200ms increments. The parameters for
T2 measurement were the same as the T1 measure-
ment except TR = 3000ms and TE = 15, 30, 45, 60,
75, 90, 120, 150, 200, 300, 400, 600, 800, 1000, 1200,
1400, 1600, 1800ms. After three-plane localizer scan,
one coronal image was obtained for each TE/TR. All
the MR images were transferred to an Advantage Win-
dow workstation for ROI measurements. Once the ROI
values of these 21 test tubes were obtained, the T1 and
T2 values for each tube with various Gadovist concen-
trations were obtained by nonlinear least square fitting
according to Eqs. (4) and (5), respectively.34

S = M{1 − 2 exp[−(TR − 0.5TE)/T1]

+ exp(−TR/T1)} (4)

S = M exp(−TE/T2), (5)

where S is the MR signal intensity, M is proportional
to the net magnetization, TR is the repetition time, TE
is the echo time, T1 is the longitudinal relaxation time,
and T2 is the transverse relaxation time.

Once the 1/T1 and 1/T2 values were obtained,
the r1 and r2 values could be determined by linear
regression according to Eq. (1). A commercial software
(Sigmaplot, version 9.01, Systat Software, CA, USA)

was used for nonlinear least square fitting and linear
regression.

Computer Simulation

Once the T10, T20, r1, and r2 values were obtained,
the T1 and T2 values for certain concentration could be
obtained from Eq. (1). Then, the MR signal intensities
for 2DSPGR and 3DFSPGR were calculated according
to Eq. (6) and those for CSE and IR were calculated
according to Eqs. (7) and (8), respectively.34

S = M
sin(FA)(1 − exp(−TR/T1)
1 − cos(FA) exp(−TR/T1)

× exp(−TE/T ∗
2 ) (6)

S = M{1 − 2 exp[−(TR − 0.5TE)/T1]

+ exp(−TR/T1)} exp(−TE/T2) (7)

S = M{1 − 2 exp(−TI /T1) + exp(−TR/T1)}
× exp(−TE/T2), (8)

where S is the MR signal intensity, M is proportional
to the net magnetization, FA is the flip angle, TR is the
repetition time, TE is the echo time, TI is the inversion
time, T1 is the longitudinal relaxation time, and T2 is
the transverse relaxation time.

First, the assumption of T2 = T ∗
2 was made in com-

puter simulation. The simulated MR signal intensity
corresponding to the optimal concentration of phan-
tom measurements was set to be equal to the peak sig-
nal intensity of the phantom for the determination of
M value. The noise levels used in computer simulation
were set to be equal to that of phantom as well. Then,
the SNR and CNR values for these four pulse sequences
were calculated according to Eqs. (2) and (3). Finally,
the simulated optimal concentrations were determined
from the maximum CNR values.

RESULTS

Optimal Concentration
Measurements

One representative 3DFSPGR image is shown in
Fig. 1(A). The concentration of Gadovist varied from 0
to 160mM. The MR signal versus concentration curve is
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Fig. 1 (A) One coronal MR image of the Gadovist phantom
using 3DFSPGR pulse sequence, (B) Signal–concentration curve
of the Gadovist phantom (concentrations of Gadovist from top
to bottom and from left to right. Row 1: 80, 100, 120, 140, 160;
Row 2: 25, 30, 35, 40, 60; Row 3: 2.5, 5, 10, 15, 20; Row 4: 0.1,
0.2, 0.4, 0.8, 1.25; Row 5: 0mM).

shown in Fig. 1(B). It demonstrates that the MR signal
intensity increases with the concentration of Gadovist
to the maximum value first, and then decreases with the
concentration of Gadovist. The CNR versus concentra-
tion curves for these four pulse sequences are shown
in Fig. 2. The CNR value increases first, reaches the
maximum value, and then decreases as the concentra-
tion of Gadovist increases. Table 2 shows the measured

Table 2. Optimal Concentrations Related to
the Maximum CNR Values for Various Pulse
Sequences.

Pulse Sequence Copt-m (mM)a Copt-s (mM)b

2DSPGR 10 13.5
3DFSPGR 20 22.8
CSE 2.5 2.0
IR 2.5 2.7

aPhantom measurement.
bComputer simulation.
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Fig. 2 (A) CNR–concentration curve of the Gadovist phantom
for 2DSPGR (�), 3DFSPGR (�), CSE (�), and IR (•) pulse
sequences. (B) The spread of the low concentration region of (A).

optimal concentrations (Copt−m) corresponding to the
maximum CNR for each pulse sequence.

T1 and T2 Measurement

The T1 and T2 fitting curves for 0.2 and 1.25mM
Gadovist obtained from Eqs. (4) and (5) are shown in
Fig. 3. The T1 values for 0.2 and 1.25mM Gadovist
are 882.1 and 187.6ms, respectively. The T1 value
of 0.2mM Gadovist is higher than that of 1.25mM
Gadovist, therefore, the MR signal intensity increases
with TR is slower than that of 1.25mM Gadovist.
The MR signal intensity of 1.25mM Gadovist increases
rapidly and reaches the plateau in a very short inter-
val. The fitting results are good; R2 = 0.9996 and
R2 = 0.9899 for 0.2 and 1.25mM Gadovist, respectively.
The T1 value becomes smaller when the concentration
of Gadovist increases. The T1 value is too small to be
measured when the concentration of Gadovist is higher
than 5.0mM. From the linear regression (0–5mM), r1

value is 4.1 s−1 mM−1 (R2 = 0.9883). The T2 values for
0.2 and 1.25mM Gadovist are 591.80 and 170.30ms,
respectively. The T2 value of 1.25mM Gadovist is lower
than that of 0.2mM Gadovist. In summary, the MR
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Fig. 3 (A) T1 and (B) T2 fitting curves for 0.2 (�) and 1.25 mM
(•) Gadovist.

signal decay of 1.25mM Gadovist with TE is faster than
that of 0.2mM Gadovist. The fitting results are good for
both 0.2mM (R2 = 0.9992) and 1.25mM (R2 = 0.9999)
Gadovist, respectively. The fitting results of T2 values
become worse when the concentration of Gadovist is
higher than 30mM. According to the linear regression
(0–5mM), r2 value is 5.70 s−1mM−1 (R2 = 0.9952).
The 1/T1 and 1/T2 values versus concentration curves
are shown in Fig. 4.

0

10

20

30

40

0 1 2 3 4 5
C(mM)

1/
T 1

,T
2(

s-1
)

Fig. 4 The linear regression of 1/T1 (�) and 1/T2 (•) with
concentrations of Gadovist.

Computer Simulation

The CNR–concentration curves from the computer sim-
ulation for various pulse sequences are shown in Fig. 5.
The CNR value increases first to the peak value and
then decreases. The optimal concentrations from the
computer simulation (Copt-s) are also listed in Table 2.

DISCUSSION

The MR signal intensity is a function of T1 and T2

values. According to Eq. (1), both T1 and T2 values
decrease as the concentration of paramagnetic contrast
agents increases. Therefore, the intensity of MR signal
increases or decreases with concentrations depending on
the predomination of T1 or T2 effect.31 The CNR val-
ues change with the concentration of contrast agents,
which have same tendency in both phantom measure-
ments and computer simulations. The CNR values ini-
tially increase to the peak values as the concentration
of the contrast agent increases because the T1 effect
is greater than the T2 effect. Afterward, they begin to
decrease as the concentration of contrast agent increases
because the T2 effect becomes greater than the T1 effect.
When the signal intensity of a certain test tube is less
than that of the distilled water, the CNR becomes neg-
ative. The range of negative CNR values implies that
the heavy T2 effect occurs when the contrast agent’s
concentration is high enough. Apparently, one should
avoid such situation in which the concentration of the
contrast agent exceeds the optimal concentration in the
use of T1W images.

Both the CNR–concentration curves from computer
simulations and phantom measurements have the same
tendency, i.e. the CNR values increase with concentra-
tions to the peak values and then decrease afterward.
The CNR values from both methods match well when
the concentrations of Gadovist are low. The deviation
between the CNR values obtained from these two meth-
ods becomes larger when the concentration of Gadovist
increases. Here, we determined the M values in Eqs.
(6)–(8) by normalizing the signal intensity to the peak
values obtained from phantom measurements. The T10,
T20, relaxivity values (r1, r2) and noise levels were
also obtained from the phantom measurements. The
relaxivity values are well known to be dependent on
field strength, temperature and solvents, etc. Herein,
relaxivity values were measured in room temperature
with distilled water as a solvent. Consequently, it might
be different from those values measured in 37◦C and
with plasma as a solvent.35,36 The relaxivity values
in this study were obtained by linear regression from
0–5mM. For simplicity, we assumed that there existed
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Fig. 5 The CNR–concentration curves of (A) 2DSPGR, (B) 3DFSPGR, (C) CSE, and (D) IR pulse sequences from computer
simulations ( s) and phantom measurements ( m).

only one r1 or r2 relaxivity value for all concentra-
tions of Gadovist, and extended the linearity from 0 to
160mM during computer simulation. It appeared that
the relaxivity value could be different for Gadovist at
high concentration and that might need to be further
verified. On the other hand, it probably was one of the
reasons that caused the mismatch of the CNR concen-
tration curves between the computer simulations and
phantom measurements. Furthermore, the assumption
of T2 = T ∗

2 might not be applicable for cases of high
concentration of Gadovist. Incidentally, the r2 value of
5.7mM−1s−1 obtained in this study was quite simi-
lar to Stalder’s result (r2 = 5.5mM−1s−1). Spin-echo
pulse sequence was used in both studies. In general,
T1 values were measured by using saturation spin echo
or inversion recovery pulse sequence.32,37,38 Here, the
r1 value of 4.1 mM−1s−1 obtained by using a spin-
echo pulse sequence was also similar to Stalder’s result
(r1 = 4.7mM−1s−1) obtained by using a inversion
recovery pulse sequence with distilled water as a solvent
at room temperature. Even though there existed some
discrepancy as discussed above while applying com-
puter simulations, the results showed that the optimal
concentrations obtained from both phantom measure-
ments and computer simulations were in good agree-
ment. The optimal concentrations might be different
for the same pulse sequence but with different scan
parameters, i.e. TR, TE and FA etc. Even so, one

could still use the measured r1, r2, T10 and T20 val-
ues to derive CNR values and obtain simulated optimal
concentrations with various parameters from computer
simulations.

CONCLUSIONS

Nowadays, there are several contrast agents available
in clinic for CE-MRI.39–43 Gadovist is the first com-
mercial contrast agent with high formulation of 1.0M.
In this study, the optimal concentrations of Gadovist
for 2DSPGR, 3DFSPGR, CSE, and IR T1W pulse
sequences were evaluated. The results show that both
the phantom measurements and computer simulations
are in good agreement. It might be helpful for diag-
nosis and treatment follow-up by the appropriate use
of contrast agents in clinic. It implies that the concen-
trations higher than the optimal concentrations should
be avoided. However, to correlate the optimal concen-
tration with respect to the optimal injecting dose in
routine examinations requires further investigations.
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