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Purpose: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target
for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance,
8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell pro-
liferation; however, their mechanism of action is controversial. We have investigated the antipro-
liferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA’s
involvement.

Experimental Design: We employed proliferation and apoptosis assays and PKA activity and cell
cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and
HeLa cell lines.

Results: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Prolif-
eration was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methyl-
xanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced
8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases
and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and aden-
osine receptor agonists or antagonists did not significantly affect proliferation.

Conclusions: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation,
and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite
8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation
by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid
cancer. (J Clin Endocrinol Metab 93: 1020–1029, 2008)

Thyroid cancer is the most prevalent endocrine malignancy.
Although differentiated thyroid cancer has generally good

prognosis, a subset of thyroid carcinomas are highly aggressive
and respond poorly to available treatment (1–5). New therapies
for metastatic, poorly differentiated, and undifferentiated thy-
roid cancer are needed.

Signals mediated by cAMP and protein kinase A (PKA) have

been implicated in the control of cell proliferation in many cell
types (6, 7). The PKA holoenzyme consists of a heterotetramer of
two homodimers of the regulatory subunits (R-subunits, RI� or
RI� and RII� or RII�) and two catalytic subunits (C�, C�, or C�)
(8), resulting in the formation of two isozymes, type I (RI) and
type II (RII). Binding of cAMP to the regulatory subunits releases
the catalytic subunits, which act as serine threonine kinases and

0021-972X/08/$15.00/0

Printed in U.S.A.

Copyright © 2008 by The Endocrine Society

doi: 10.1210/jc.2007-2331 Received October 19, 2007. Accepted December 4, 2007.

First Published Online December 11, 2007

* A.J.R.-W. and H.-P.H. contributed equally to this work.

Abbreviations: 7AAD, 7-Amino-actinomycin D; BrdU, bromodeoxyuridine; 8-Cl-ADO,
8-Cl-adenosine; FBS, fetal bovine serum; FITC, fluorescein isothiocyanate; IBMX, 3-isobu-
tyl-1-methylxanthine; mAb, monoclonal antibody; MRS1523, 3-propyl-6-ethyl-5-[(ethyl-
thio)carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate; MTS, 3-(4,5-dimethylthiazol-2yl)-
5-(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, salt; NECA, N-ethyl-carbo-
midoadenosine; PKA, protein kinase A; PKI, protein kinase inhibitor; R-subunits; regulatory
subunits; XAC, xanthine amine congener.

O R I G I N A L A R T I C L E

E n d o c r i n e R e s e a r c h

1020 jcem.endojournals.org J Clin Endocrinol Metab. March 2008, 93(3):1020–1029



phosphorylate target molecules to control a variety of cellular
functions (6, 9, 10).

Site-selective cAMP analogs induce growth inhibition in a
variety of cancer cell types. Among the cAMP analogs initially
tested, the 8-Cl derivative of cAMP (8-Cl-cAMP) was the most
potent (11). Although evidence of cellular toxicity was consis-
tently present, conflicting views arose as to the mechanism of its
action. One group of studies suggested that the inhibitory effect
of 8-Cl-cAMP involves its binding to R-subunits of PKA to mod-
ulate both type I and type II PKA isozymes, to reduce the RI to
RII subunit ratio (11–13). Other studies provided evidence that
8-Cl-cAMP elicits antiproliferative effects via its extracellular
conversion to a dephosphorylated metabolic breakdown prod-
uct, 8-Cl-adenosine (8-Cl-ADO), by serum phosphodiesterase
and 5�-nucleotidase (14–19). The intracellular level of 8-Cl-
ADO, however, depends on the activity of two cellular enzymes:
adenosine deaminase (Km � 17 �M), which deaminates 8-Cl-
ADO to an inactive 8-Cl-inosine, and adenosine kinase (Km � 2
�M), which phosphorylates 8-Cl-ADO to an active 5�,8-chloro-
AMP. Higher amounts of 5�,8-chloro-AMP are present in the cell
due to the lower Km of adenosine kinase (20). Some reports
suggest that 8-Cl-ADO acts through the inhibition of DNA
and/or RNA polymerase (14, 16) or by premature RNA chain
termination (21). Finally, others show that the inhibitory effects
of both 8-Cl-cAMP (22) and 8-Cl-ADO (23, 24) result in apo-
ptosis; in cells treated with 8-Cl-cAMP, apoptosis is thought to
occur only in cells that accumulate in G2/M cell cycle phase (22),
whereas cells treated with 8-Cl-ADO are thought to accumulate
in the G0/G1 phase without induction of apoptosis (25).

In the present investigation, we studied three human thyroid
cancer cell lines: poorly differentiated carcinoma (NPA), follic-
ular carcinoma (WRO), and undifferentiated (anaplastic) cancer
(ARO). As a reference cell line, we used HeLa cells. We studied
the effect of 8-Cl-cAMP and 8-Cl-ADO on [3H]thymidine in-
corporation, cell proliferation/metabolism, the cell cycle, and
apoptosis. We assessed whether the effect of 8-Cl-cAMP is due
to its metabolite 8-Cl-ADO and whether the effect of both drugs
is due to an action on A1, A2a and -b, and A3 adenosine surface
receptors (17). We also assessed the enzymatic activity of the
PKA holoenzyme and the individual PKA subunits in relation-
ship to 8-Cl-ADO. Our data indicated that 8-Cl-cAMP through
8-Cl-ADO inhibited cell proliferation/ metabolism and induced
thyroid cell accumulation in the G1/S or G2/M cell cycle phases
and apoptosis. There was no apparent involvement of adenosine
receptors and no direct involvement of the PKA enzyme and/or
R-subunits in the above actions. The data suggest that 8-Cl-ADO
(or 8-Cl-cAMP) may be a potential chemotherapeutic agent for
the treatment of aggressive thyroid cancer, and its effects will not
depend on PKA signaling.

Materials and Methods

Cell lines and other materials
Thyroid cancer cell lines have been extensively described elsewhere

(26, 27). HeLa cells were from American Type Tissue Collection (Rock-
ville, MD); RPMI 1640 media, AIM V media, fetal bovine serum (FBS;

GIBCO/Invitrogen, Carlsbad, CA), and anti-bromodeoxyuridine (anti-
BrdU)-fluorescein isothiocyanate (FITC) monoclonal antibody (mAb)
from Invitrogen (Carlsbad, CA); FBS from Hyclone (Logan, UT);
forskolin, isoproterenol, 8-Cl-cAMP, 8-Br-cAMP, 3-propyl-6-ethyl-5-
[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate
(MRS1523), N-ethyl-carbomidoadenosine (NECA), adenosine, xan-
thine amine congener (XAC), 3-isobutyl-1-methylxanthine (IBMX),
and LY294002 from SigmaAldrich (St. Louis, MO); 8-Cl-adenosine
from the NIH/NCI (Bethesda, MD); protein kinase inhibitor (PKI)
and Cell Titer 96 AQ assay 3-(4,5-dimethylthiazol-2yl)-5-(3-
carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, salt
(MTS) assay] from Promega (Madison WI); annexin V-FITC,
7-amino-actinomycin D (7AAD) from BD Pharmingen (San Diego,
CA); PKA assay kit and [��32P]triphosphate from Amersham Phar-
macia (Piscataway, NJ); [3H]thymidine from MP Biomedicals
(Solon, OH); and FACScalibur flow cytometer and Cell Quest soft-
ware from Becton Dickinson (San Jose, CA).

Cell culture and plating
Cells were grown in RPMI 1640 media with 1% L-glutamine, 10%

FBS, and 0.05% gentamicin. Population doubling times were as follows:
ARO, 24 h; WRO, 36 h; HeLa, 77 h; and NPA, 79 h. Cells were plated
as follows: in 24-well plates (2 � 104 cells/ml) or in 96-well plates (1 to
2.5 � 103 cells/well) for [3H]thymidine and MTS assays, respectively; in
six-well plates (3 � 104 cells/ml) for apoptosis experiments; in 175-cm2

flasks (1 � 106 cells/ml) for PKA assays and gel electrophoresis; and in
75-cm2 flasks (2 � 105 cells/10 ml) for cell cycle analysis. In all exper-
iments, cells were allowed to attach overnight before the addition of
drugs.

Cell proliferation
Cell proliferation was determined by [3H]thymidine incorporation or

MTS assay. Cells, incubated with media alone or with media, drugs, and
2 �Ci/well [3H]thymidine, were washed with PBS (pH 7.4), and 10%
TCA (23 C) added. Proteins were solubilized with 0.5 N NaOH and
[3H]thymidine detected by scintillation count. For MTS assays, cells
were incubated with drugs, and Cell Titer 96 AQ solution was added (37
C) before determining the absorbance at 490 nm.

Quantitation of apoptosis
Apoptosis was quantified as reported previously (10) and is the per-

centage of cells that excluded 7AAD and exteriorized membrane phos-
phatidylserine, detected by the binding of annexin V-FITC (28). Briefly,
cultures treated with drugs were washed, resuspended in binding buffer,
labeled with 7AAD and annexin V-FITC, and incubated, and a minimum
of 20,000 events were analyzed by flow cytometry (Cell Quest software).
Apoptotic cells were stained by annexin V-FITC; late apoptotic/necrotic
cells were stained by both annexin V-FITC and 7AAD.

Cell cycle analysis
Cell cycle analysis was performed as previously described (10).

Briefly, cells were synchronized in low-serum medium and released from
synchronization with 10% FBS/RPMI. BrdU was added 1 h before each
time point. After 1 h, cells were collected, washed, and resuspended in
PBS followed by ethanol. Samples were centrifuged and washed with
HCl/Triton X-100, resuspended in H2O, and boiled. PBS/Triton X-100
was added followed by centrifugation. Anti-BrdU-FITC mAb was added,
and samples were kept in the dark. Propidium iodide was added, and a
minimum of 20,000 events were analyzed by flow cytometer using
CellQuest software.

Gel electrophoresis
Briefly, proteins in whole-cell lysates were separated by SDS-PAGE

on 10% Tris-glycine gels (7). Proteins, transferred to nitrocellulose mem-
branes, were probed with primary antibodies to PKA R-subunit proteins,
followed by secondary antibodies against mouse or rabbit IgG. Bands
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were detected by ECL reagent and quantitated by densitometer scanning
(Molecular Dynamics, Sunnyvale, CA). Equal sample loading was con-
firmed, and arbitrary values were calculated when blots were stripped
and reprobed with �-actin mAb.

PKA activity determinations
PKA activity was measured as described previously (29), using

[�-32P]triphosphate, in cultures that were lysed in a PKA extraction

buffer [2.5 mM Tris-HCl (pH 7.4), 0.5 mM

EDTA, 0.5 mM EGTA, 10 mM �-mercaptoetha-
nol]. Extracts were exposed to cAMP or cAMP
and PKI before determination of PKA activity.
All determinations were performed twice for
each sample and corrected for protein content.

Statistics
Results were analyzed by ANOVA using the

PROC Mixed procedure of the Statistical Analy-
sis System (SAS Institute, Cary, NC). When more
than two groups were compared, the PDIFF pro-
cedure (SAS Institute) was used to compare dif-
ferences between treatment means. Differences
were considered significant at P � 0.05.

Results

8-Cl-ADO inhibits cell proliferation
Cells were cultured with 8-Cl-ADO

and [3H]thymidine (Fig. 1A) or with 8-Cl-
ADO alone in cell metabolism studies (Fig.
1B). 8-Cl-ADO inhibited [3H]thymidine
incorporation in all cells in a time and con-
centration-dependent manner. Cell num-
bers used are based on cell-titration ex-
periments. A maximal inhibitory effect in
the MTS assay was observed in a 4-d in-
cubation period (data not shown). Under
these conditions, optimal inhibition oc-
curred on d 4 (to 90%, Fig. 1A; to 82%,
Fig. 1B). Curves were biphasic (Fig. 1A
and 0 –7.5 �M 8-Cl-ADO, Fig. 1B) and in-
hibition was decreased on d 5. Curves (Fig.
1B) were statistically different for thyroid
cells (P � 0.0001) only. High levels of in-
hibition occurred with both assays, with a
reversal of the inhibition on d 5. Cells (Fig.
1C) were incubated (4 d) with the A1, A2,
and A3 adenosine receptor agonist aden-
osine; the A1, A2, adenosine receptor ag-
onist NECA; the A1, A2a, andA2b aden-
osine receptor antagonist XAC; or the A3
adenosine receptor antagonist MRS1523
(panels 1– 4, respectively) and 20 �M 8-Cl-
ADO (panels 3 and 4). The adenosine re-
ceptor agonists (except NECA at a toxic
concentration, 500 �m) did not inhibit cell
metabolism, and no reversal of the inhibi-
tion by 8-Cl-ADO occurred with the aden-
osine receptor antagonists. These data ex-

clude the possibility that 8-Cl-ADO’s effect is by an effect on
adenosine receptors.

8-Cl-ADO undergoes intracellular metabolism
We preincubated 8-Cl-ADO in complete media (to 7 d; 37 C)

without cells, followed by incubation with cells (4 d in the same
solution; Fig. 2A). No significant effect on the inhibition of cell
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FIG. 1. 8-Cl-ADO inhibits [3H]thymidine uptake and cell metabolism in thyroid cancer cells and in HeLa
cells, with no effect on adenosine receptors. A, 8-Cl-ADO inhibits [3H]thymidine uptake in a time- and
concentration-dependent manner. Cells in 24-well culture plates were incubated for 1–5 d with increasing
8-Cl-ADO concentrations (0–30 �M), in the presence of 2 �Ci [3H]thymidine per well. Counts per minute
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minute. One representative experiment is shown. B, Cells in 96-well culture plates were incubated for 4
and 5 d with 0–30 �M 8-Cl-ADO. C, Cells in 96-well culture plates were incubated for 4 d with adenosine
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SEM of three experiments (C); P � 0.0001 (B).
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metabolism by preincubated 8-Cl-ADO was observed in all cell
types, except ARO (�14%, 5 �M, 7 d; P � 0.032). Thus, the
reduced inhibition on d 5 (Fig. 1, A and B) is not due to extra-
cellular drug metabolism. Cells were incubated with 8-Cl-ADO
for 4 and 5 d (control d 4 and 5), or the drug was replenished on
d 4 (d 4 drug replenished) and [3H]thymidine incorporation de-
termined on d 5 (Fig. 2B). In all cells, decreased inhibition oc-
curred on control d 5 (P � 0.0001) compared with control d 4.
In cultures where drug was replenished on d 4 and assayed on d
5, the inhibition of control d 4 was maintained. These data sug-
gest an intracellular mechanism of drug metabolism.

8-Cl-cAMP is metabolized to 8-Cl-ADO
Cells were incubated (4 d) with 8-Cl-ADO, 8-Cl-cAMP, and

8-Cl-cAMP plus the phosphodiesterase inhibitor IBMX (50 �M)
in complete media containing Hyclone serum and 8-Cl-cAMP in
AIM V serum-free media (Fig. 3A). Although for 8-Cl-ADO,

IC50 values were greater in [3H]thymidine
than in MTS assays, in MTS assays, 8-Cl-
cAMP inhibited cell metabolism at IC50 val-
ues similar to that of 8-Cl-ADO (see IC50

values, Fig. 3B). However, the inhibition by
8-Cl-cAMP was greatly reduced by IBMX
(to 62%, P � 0.0001–0.01) and further re-
duced in serum-free media (to 75%, P �

0.0001; Fig. 3A). No inhibition occurred
with IBMX alone, and IBMX did not alter
the inhibition by 8-Cl-ADO (data not
shown). The level of inhibition by 8-Cl-
cAMP also depended on the source of FBS
(e.g. Hyclone vs. GIBCO), with media con-
taining Hyclone serum producing the great-
est inhibition by 8-Cl-cAMP (Fig. 3C). Ac-
cordingly, IBMX showed a decrease in the
inhibition (20–72%, HeLa to ARO cells, re-
spectively) by 8-Cl-cAMP (25 �M; Fig. 3D).
A sharp decline was observed in the recovery
from inhibition, likely due to toxicity at high
IBMX concentrations (400–800 �M).
Therefore, the data suggest that 1) 8-Cl-
cAMP is metabolized to 8-Cl-ADO and 2)
the inhibitory effect of 8-Cl-cAMP is due to
its by-product 8-Cl-ADO.

8-Cl-ADO and 8-Cl-cAMP induce
apoptosis

Cells were incubated (4 d) with 8-Cl-
ADO, 8-Cl-cAMP, or 8-Cl-cAMP plus 50
�M IBMX (Fig. 4, A–C, respectively) in me-
dia containing Hyclone serum. Both 8-Cl-
ADO and 8-Cl-cAMP induced apoptosis in
all cell types in a concentration-dependent
manner. Apoptosis induced by 8-Cl-cAMP
was reduced (to 65%; P � 0.004 to �0.001)
by IBMX. In cells treated with 8-Cl-ADO or
8-Cl-cAMP (Fig. 4, A and B, respectively),
apoptosis led to significantly high levels of

necrosis (Fig. 4, A and B, upper panels). Detectable total cell death
(early apoptosis plus necrosis) was high (to 57%) in all cell types.
Thus,valuesgiven forapoptosis excludeapoptotic celldeath incells
that had disintegrated during earlier incubation times. Total cell
death, however, was similar to levels of inhibition seen in cell me-
tabolism and [3H]thymidine studies (Fig. 1, A and B) on d 4.

8-Cl-ADO alters cell proliferation independently of the
PKA signaling pathway

Basal levels of PKA activity (Fig. 5A) were similar in all cell lines
(�40 cpm/�g protein/ml). After exposure to cAMP, PKA activity
was significantly increased in WRO and ARO cells (20 and 40%,
respectively; P � 0.0005 to �0.0001) only at the high 8-Cl-ADO
concentration (30 �M) and in ARO cells (10%; P � 0.0001) at the
lower 8-Cl-ADO concentration (15 �M). However, PKA activity
was decreased by 85 and 40% in HeLa cells at 15 and 30 �M,
respectively (P � 0.0001). No effect was seen at 15 �M in NPA or
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WRO cells. Thus, there was no consistent ef-
fect of 8-Cl-ADO on HeLa or thyroid cells.
After exposure tocAMPand8-Cl-ADO,PKA
activity was reduced to basal levels (minus
cAMP) by the PKA-specific inhibitor PKI. Al-
though PKA R-subunit levels were altered by
8-Cl-ADO, they were differentially affected
(Fig. 5B) with no reduction in the ratio of RI-
to RII-type subunits (Fig. 5C). The data indi-
cate a differential effect of 8-Cl-ADO on PKA
activity in HeLa vs. thyroid cells with a small
stimulatory effect in thyroid cells and a much
greater inhibition in HeLa cells. Because the
PKB/Akt cell signaling pathway also pro-
motes cell proliferation incancer cells (30),we
determined whether the PKA and the PKB/
Akt signaling pathways were involved in the
inhibition of cell proliferation/metabolism by
8-Cl-ADO. Cultures were incubated (4 d)
with PKA pathway stimulants [8-Br-cAMP,
forskolin (FSK), and isoproterenol (ISO), Fig.
5D]and thePKAandPKBpathway inhibitors
H89 (50 nM) and LY294002 (30 �M), respec-
tively (Fig.5E).PKAstimulantshad littleorno
effect on cell proliferation/metabolism (Fig.
5D). Although in ARO cells a small inhibition
occurred with 8-Br-cAMP (to 35%; P �

0.0001), it was 2.6-fold less than that exerted
by 8-Cl-ADO in the same cell line. LY294002
inhibited cell metabolism by 50–70% (P �

0.0001), whereas H89 inhibited metabolism
only in NPA cells (to 17%; P � 0.01). This
suggests a small stimulatory effect of 8-Cl-
ADO on PKA activity in thyroid cells but, in
general, no direct involvement of the PKA cell
signaling pathway in cell proliferation/metab-
olism. Instead, the data confirm that the PKB/
Akt cell signaling pathway is involved in cell
proliferation/metabolism (30).

Accumulation of cells in G1/S or G2/M
phases of the cell cycle

Cell cycle analysis of synchronized cells
treated with 8-Cl-ADO (20 �M, 72 h), indi-
cated that NPA cells accumulate in the
G2/M phase of the cell cycle, whereas WRO
and ARO cells accumulate in G1/S. No
phase accumulation was observed with
HeLa cells (Fig. 6).

Discussion

Our study addressed the questions of 1)
whether or not 8-Cl-ADO has growth-in-
hibitory effects on human thyroid cancer
and HeLa cells and 2) whether the inhibitory
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FIG. 3. Metabolism of 8-Cl-cAMP to 8-Cl-ADO: effect of IBMX and serum-free media on extracellular drug
metabolism. A, Cells in 96-well culture plates were incubated with increasing concentrations (0–30 �M) of
8-Cl-ADO, 8-Cl-cAMP, or 8-Cl-cAMP plus IBMX (50 �M) in media containing 10% FBS (Hyclone). Cells were
also incubated with 8-Cl-cAMP in serum-free medium. All cultures were incubated for 4 d. B, List of IC50

values from [3H]thymidine and MTS assays. C, Cells in 96-well culture plates were incubated (4 d) with
increasing concentrations of 8-Cl-cAMP in media containing serum from GIBCO/Invitrogen or from
Hyclone. D, Cells in 96-well culture plates were incubated (4 d) with increasing concentrations of IBMX (0–
800 �M) and/or 8-Cl-cAMP (25 �M). In A, C, and D, Cell Titer 96 AQ solution was added for 3.5 h before
plates were read using an ELISA plate reader at 460 nm. Results are expressed as percentage of
control absorbance and are mean � SEM of six experiments (A) and mean � SD of two experiments (C
and D). *, P � 0.01; **, P � 0.0001 (A).
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effects of the parent compound, 8-Cl-cAMP, are due to its met-
abolic by-product, 8-Cl-ADO. We also examined possible mech-
anisms of action of 8-Cl-ADO on cell growth. We first showed
that 8-Cl-ADO inhibited cell proliferation/metabolism and
[3H]thymidine incorporation in all thyroid and HeLa cell lines
(Fig. 1). IC50 values obtained by MTS assay were comparable to
those reported for other cancer cell lines (19, 31–33). However,

IC50 values determined by [3H]thymidine
assay were about 10-fold higher than those
obtained by MTS assay (Fig. 3B), possibly
due to the difference in sensitivity of the two
assays (34).

The inhibition by 8-Cl-ADO also de-
creased with time (on d 5 of incubation) (Fig.
1, A and B). By preincubating 8-Cl-ADO (37
C, up to 7 d without cells), followed by incu-
bation with cells and the same preincubated
drug, or by replenishing the drug on d 4, we
determined whether the decrease in inhibition
was due to intracellular (Fig. 2B) and/or ex-
tracellular (Fig. 2A) drug metabolism, respec-
tively. We found no difference in the inhibi-
toryeffectwith thepreincubateddrug,andthe
decrease in inhibition on d 5 could be elimi-
nated by replenishing the drug on d 4. This
suggests that 8-Cl-ADO is not metabolized by
the media at 37 C but may be degraded within
the cell. As shown by others (17, 19, 35), the
possibility exists that by d 5, intracellular
adenosine deaminase may convert the active
8-Cl-ADO to an inactive product, 8-Cl-ino-
sine, thereby reducing inhibition.

We addressed the ongoing controversy
as to whether or not 8-Cl-cAMP acts as a
pro-drug and is metabolized by cellular or
serum phosphodiesterase and 5�-nucleoti-
dase (18, 19, 31, 35) to the highly potent
8-Cl-ADO. We first found that 8-Cl-cAMP
inhibits cell proliferation in all cell lines and
that the inhibition is comparable to that of
8-Cl-ADO when Hyclone instead of
GIBCO/Invitrogen serum (Fig. 3, A–C) was
used. The inhibition by 8-Cl-cAMP was
greatly reduced by IBMX (Fig. 3, A and D)
and further reduced in serum-free media in
thyroid cells. There was, however, less re-
duction in inhibition in HeLa cells with
IBMX and serum-free media. These studies
and those of others (15–18, 33, 35, 36) sug-
gest that 8-Cl-cAMP is metabolized to 8-Cl-
ADO by serum phosphodiesterase (and pos-
sibly 5�-nucleotidase) and that the source of
the serum plays a large part in this conver-
sion. These data may explain the large dif-
ference in IC50 values for 8-Cl-ADO and
8-Cl-cAMP that has also been reported by
others (17, 31).

One objective of our study was to examine the mechanisms
of inhibition of cell proliferation by 8-Cl-ADO and 8-Cl-
cAMP. We measured apoptosis (Fig. 4) in 8-Cl-ADO- and
8-Cl-cAMP-treated cells using the annexin V/7AAD assay
(37). Treatment with 8-Cl-ADO (Fig. 4A) and 8-Cl-cAMP
(Fig. 4B) for 4 d resulted in apoptosis in all cell lines. The rank
order of apoptosis (data not shown) was similar to the order

A B

C

FIG. 4. 8-Cl-cAMP and 8-Cl-ADO stimulate apoptosis in HeLa cells and in thyroid cancer cells.
IBMX inhibits 8-Cl-cAMP-induced apoptosis. Cells were incubated with increasing concentrations
of 8-Cl-ADO (A), 8-Cl-cAMP (B), or 8-Cl-cAMP plus (50 �M) IBMX (C). Apoptosis was assessed by
annexin V-FITC/7AAD assay staining and measured by FACScalibur flow cytometry. Points are
mean � SEM of three experiments (A), four experiments (B), and three experiments (C), and results
are expressed as percentage of apoptosis (minus apoptosis in untreated cells). Dot plots in C are
of one representative experiment. P � 0.004 to �0.0001 (C).

J Clin Endocrinol Metab, March 2008, 93(3):1020–1029 jcem.endojournals.org 1025



FIG. 5. Differential effect of 8-Cl-ADO on PKA activity in thyroid cancer cells and in HeLa cells: no significant effect of PKA pathway stimulants or the PKA activity
inhibitor H89 on cell metabolism/proliferation. A, Cells in 175-cm2 flasks were incubated with 8-Cl-ADO (15 and 30 �M) for 4 d, and cell extracts were exposed to cAMP
or to cAMP plus the PKA-specific inhibitor PKI. PKA activity levels were then determined. Results are expressed as cpm [�32P]dATP per microgram protein per milliliter
and are mean � SEM of three experiments. B, Cells in 175-cm2 flasks were incubated with 8-Cl-ADO (0–25 �M) for 4 d and lysed, and gel electrophoresis and
immunoblot assay were performed using antibodies to PKA R-subunits. C, Ratio of PKA R-subunits RI� plus RI�/ RII� plus RII� from B above. D, Cells in 96-well culture
plates were incubated for 4 d with increasing concentrations (0–40 �M) of the PKA pathway stimulants 8-Br-cAMP, isoproterenol (ISO), and forskolin (FSK), or with 8-Cl-
ADO. E, cells were incubated with the PKA pathway inhibitor, H89 (50 nM) or with the PKB (Akt)-pathway inhibitor LY294002 (30 �M) for 0–78 h. Cell titer 96 AQ
solution was added to cultures in D and E for 3.5 h, before plates were read using an ELISA plate reader at 460 nm. Points in B are mean � SEM of three experiments,
expressed as percentage of control band density/�-actin (arbitrary values). Bands are representative of one experiment. Results are expressed as percentage of control
absorbance � SEM of three experiments (D) or mean � SD of two experiments (E). *, P � 0.0001 (A, D, and E); **, P � 0.0005 (A); ***, P � 0.01 (E) compared with
baseline.
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of the IC50 values (Fig. 3B) for both drugs as determined by the
MTS assay. Both drugs caused rapid late apoptosis/necrosis
(Fig. 4, A and B, upper panels). Early apoptosis was decreased
at the higher 8-Cl-ADO and 8-Cl-cAMP concentration (30
�M). This may be accounted for by a population of cells that
underwent cell death earlier in the incubation. These cells
would disintegrate by the fourth day and would not be as-
sessed by the assay. Because IBMX decreased 8-Cl-cAMP-
induced antiproliferation (Fig. 3, A and D), we determined
whether IBMX also reduces 8-Cl-cAMP-induced apoptosis.
8-Cl-cAMP-induced apoptosis (Fig. 4C) was reduced with
IBMX, as was late apoptosis/necrosis (data not shown). These
data show that both drugs induce apoptosis and confirm that
8-Cl-cAMP, acting as a pro-drug, is converted to 8-Cl-ADO to
induce an inhibition of proliferation and apoptosis.

Next, we examined the involvement of the PKA cell signaling
pathway in the inhibition by 8-Cl-ADO. Because 2-Cl-adenosine
activates adenosine receptors that stimulate adenyl cyclase and
PKA activity to affect cell proliferation in some cell lines (17, 38),
the possibility exists that the inhibition by 8-Cl-ADO is due to its
action as an adenosine receptor agonist, similar to 2-Cl-adeno-
sine. However, in our studies, incubations with adenosine re-
ceptor agonists and antagonists with and without 8-Cl-ADO
(Fig. 1C) showed no effect on proliferation/metabolism. The ef-
fect of 8-Cl-ADO on PKA activity (Fig. 5A) was also examined.
PKA activity was altered in a differential manner by 8-Cl-ADO,
with decreased PKA activity in HeLa cells and a small increase in

activity in thyroid cells, mostly at the high
8-Cl-ADO concentration (30 �M). 8-Cl-
ADO did not affect basal PKA activity or
PKA activity determined in the presence of
the PKA inhibitor PKI. 8-Cl-ADO did dif-
ferentially alter levels of PKA R-subunits
(Fig. 5B). These changes, however, were
contrary to those reported previously (12,
13, 39), with no reduction in the ratio of RI
to RII subunits (Fig. 5C).

Known stimulants of PKA activity (Fig.
5D) at 8-Cl-ADO inhibitory concentrations
showed little or no inhibition of cell metab-
olism, compared with that with 8-Cl-ADO.
Likewise, the PKA pathway inhibitor H89
had no or only a small inhibitory effect (to
17%, only in NPA cells), whereas inhibition
was greatly induced (to 70%) by the PKB/
Akt pathway inhibitor, LY294002, as seen
by others with 8-Cl-cAMP (40). These data,
and the fact that 8-Cl-ADO has no effect on
adenosine receptors (Fig. 1C) suggested that
although in thyroid cells, there is a small
stimulation of PKA activity at high 8-Cl-
ADO concentrations and a differential ef-
fect on R-subunit levels, PKA most likely
does not mediate changes in growth directly
but may act indirectly by modulating the ac-
tivity of factors that can affect tumor cell
growth, as surmised by other investigators

(31). The PKA cell signaling pathway and the activity of the PKA
holoenzyme are in all probability not directly involved in the
inhibition by 8-Cl-ADO. These studies point to an effect of the
drugs on the PKB/Akt cell signaling pathway (40); more studies,
however, are required to determine the mechanism of action of
8-Cl-ADO on signaling by PKB/Akt.

As in other studies (22, 25), our results show that 8-Cl-
ADO-induced inhibition of thyroid cell metabolism is related
to cell cycle arrest. Initially (Fig. 1A), we showed that the
incorporation of [3H]thymidine on d 5 is increased by 8-Cl-
ADO, whereas in MTS assays, the inhibition of proliferation
(at the higher 8-Cl-ADO concentrations) on d 5 remains the
same as on d 4 (Fig. 1B). These data suggest that cells treated
with high 8-Cl-ADO concentrations retain the ability to in-
corporate [3H]thymidine (Fig. 1A) but are unable to divide
(Fig. 1B). Indeed, cell cycle analysis of 8-Cl-ADO-treated cells
shows that by 3 d of incubation, NPA cells accumulate in
G2/M phase of the cell cycle, whereas WRO and ARO cells
accumulate in G1/S phase (Fig. 6), indicating cell cycle arrest
by the drug. Our results with NPA cells show cell cycle arrest
in G2/M and confirm the findings of others (22). However,
our results in all cell types are contrary to those of others who
show cell accumulation in G0/G1, with no induction of apo-
ptosis (25). These results may be due to differences in cell type,
methods used, intracellular drug metabolism, and cell cycle
transit time. Also, although we have shown cell accumulation
in G1/S and G2/M cell cycle phases, as well as apoptosis with

FIG. 6. 8-Cl-ADO induces the accumulation of cells in G1/S and G2/M phases of the cell cycle. Cells,
synchronized (72 h) in low-serum (0.1%) media were incubated for 3 d with or without 8-Cl-ADO (20 �M)
in complete medium. Cells were pulse labeled with BrdU, followed by the addition of anti-BrdU-FITC mAb
and propidium iodide. Cell cycle analysis was determined by FACScalibur flow cytometry, using Cell Quest
software. On the y-axis is the percentage of newly formed DNA (BrdU) content as indicated by anti-BrdU-
FITC mAb in each cell cycle phase on the x-axis is propidium iodide. Three-dimensional plots are from one
representative experiment.
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8-Cl-ADO, the existing data do not determine whether the
cells that accumulate in G1/S or in G2/M are the same cell
population that undergoes apoptosis.

In summary, our data indicate that proliferation of HeLa and
three widely used thyroid cancer cell lines can be inhibited by
8-Cl-ADO and 8-Cl-cAMP. We showed that 1) inhibition of
proliferation by 8-Cl-cAMP is via the 8-Cl-cAMP metabolic
breakdown product 8-Cl-ADO, which may also undergo intra-
cellular degradation over time; 2) cells accumulate in G1/S or
G2/M of the cell cycle and undergo apoptosis, suggesting that
8-Cl-ADO may cause cell cycle arrest, although HeLa cells also
undergo apoptosis without an apparent phase accumulation;
and 3) PKA activity and the PKA R-subunits have no direct ef-
fects on 8-Cl-cAMP or 8-Cl-ADO actions. Because we found
subtle differences in the effect of 8-Cl-ADO on the four cell types
tested, generalizations cannot be made for the effect of 8-Cl-
ADO on all cancer cell types; thus, a thorough determination of
inhibition of proliferation and mechanism of action should be
established for each cancer cell type. Finally, these data may
indicate that for aggressive thyroid cancer, 8-Cl-ADO may be a
useful, if not powerful, drug.
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